SYMMETRIES OF THE VARIABLE-COEFFICIENT KDV EQUATION AND 3 HIERARCHIES OF THE INTEGRODIFFERENTIAL VARIABLE-COEFFICIENT KDV EQUATION

被引:2
作者
ZHANG, JF [1 ]
HAN, P [1 ]
机构
[1] ZHOUSHAN TEACHERS COLL,DEPT PHYS,ZHOUSHAN 316004,PEOPLES R CHINA
来源
CHINESE PHYSICS LETTERS | 1994年 / 11卷 / 12期
关键词
D O I
10.1088/0256-307X/11/12/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using a simple method to factorize the recurison operator, the inverse recursion operator of the variable coefficient KdV equation is exhibited explicitly. Three new sets of symmetries of the variable coefficient KdV equation are given in addition to the known K symmetries and tau symmetries. Starting from these sets of symmetries, we obtained three hierarchies of the variable coefficient KdV integro-differential equations.
引用
收藏
页码:721 / 723
页数:3
相关论文
共 9 条
[2]   NONPROPAGATING SOLITONS OF THE VARIABLE-COEFFICIENT AND NONISOSPECTRAL KORTEWEG-DEVRIES EQUATION [J].
CHAN, WL ;
LI, KS .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2521-2527
[3]   THE PAINLEVE ANALYSIS OF DAMPED KDV EQUATION [J].
HLAVATY, L .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (05) :1405-1406
[4]  
Lou Sen-Yue, 1992, Acta Physica Sinica, V41, P182
[5]  
LOU SY, NBNIMP0592 PREPR
[6]  
LOU SY, 1992, 21 INT C DIFF GEOM M
[7]   AUTO-BACKLUND TRANSFORMATION, LAX PAIRS, AND PAINLEVE PROPERTY OF A VARIABLE-COEFFICIENT KORTEWEG-DEVRIES EQUATION .1. [J].
NIRMALA, N ;
VEDAN, MJ ;
BABY, BV .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) :2640-2643
[8]  
OLVER PJ, J MATH PHYS, V18, P1212
[9]   OBSERVATION OF A NONPROPAGATING HYDRODYNAMIC SOLITON [J].
WU, J ;
KEOLIAN, R ;
RUDNICK, I .
PHYSICAL REVIEW LETTERS, 1984, 52 (16) :1421-1424