ENTROPY IN THE RUSSO-SUSSKIND-THORLACIUS MODEL

被引:23
作者
HAYWARD, JD
机构
[1] Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, Silver Street
关键词
D O I
10.1103/PhysRevD.52.2239
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The RST model is given a boundary term and a Z field so that it is well posed and local. The Euclidean method is described for a general theory and used to calculate the RST intrinsic entropy. The evolution of this entropy for the shock wave solutions is found and it obeys a second law.
引用
收藏
页码:2239 / 2244
页数:6
相关论文
共 24 条
[1]  
BANKS T, UNPUB LECTURES BLACK
[2]  
BEKENSTEIN J, 1995, GENERAL RELATIVITY
[3]  
BEKENSTEIN J, 1972, PHYS REV D, V6, P2333
[4]   HOW FAST DOES INFORMATION LEAK OUT FROM A BLACK-HOLE [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW LETTERS, 1993, 70 (24) :3680-3683
[5]  
BEKENSTEIN JD, GRQC9409015 REP
[6]   EVANESCENT BLACK-HOLES [J].
CALLAN, CG ;
GIDDINGS, SB ;
HARVEY, JA ;
STROMINGER, A .
PHYSICAL REVIEW D, 1992, 45 (04) :R1005-R1009
[7]   BLACK-HOLE THERMODYNAMICS AND INFORMATION LOSS IN 2 DIMENSIONS [J].
FIOLA, TM ;
PRESKILL, J ;
STROMINGER, A ;
TRIVEDI, SP .
PHYSICAL REVIEW D, 1994, 50 (06) :3987-4014
[8]   ACTION INTEGRALS AND PARTITION-FUNCTIONS IN QUANTUM GRAVITY [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICAL REVIEW D, 1977, 15 (10) :2752-2756
[9]  
GIDDINGS SB, 1993, STRING QUANTUM GRAVI
[10]  
GIDDINGS SB, 1994 TRIEST SUMM SCH