Modifications to a Finnigan ITS40 ion trap mass spectrometer are described which allow its use with a direct insertion probe. Details are given of the fabrication of a membrane probe for such an instrument. The membrane probe, which includes facilities for heating the fluid, employs a tubular membrane which is located just outside the electrode structure of the ion trap. Direct analysis of organic compounds in aqueous solution is demonstrated using a silicone membrane, with compounds such as benzene, chlorobenzene and dichloroethene being studied below the 1 ppb level. The effects of operating parameters including probe temperature, ion trap temperature, solution flow rate, mass spectrometer scan speed, and instrument tune procedures are explored in detail. Optimum performance characteristics are identified and trace level detection of eight organic compounds in the parts per trillion range is demonstrated. In seven of the eight cases studied, detection limits are below the EPA practical limit of quantitation levels. It is shown that the most sensitive mode of operation is when steady state passage of the analyte across the membrane is achieved, however, the time required for this is long in the case of some samples, and a dynamic flow injection analysis procedure is then favored. Use of the modified inlet system for solid sample introduction via a standard solids probe is also demonstrated.