Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media

被引:80
作者
Ammar, Kais [1 ]
Appolaire, Benoit [2 ]
Cailletaud, Georges [1 ]
Forest, Samuel [1 ]
机构
[1] Mines ParisTech, Ctr Mat, CNRS, UMR 7633, BP 87, F-91003 Evry, France
[2] Ecole Mines Nancy, LSG2M, F-54042 Nancy, France
来源
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS | 2009年 / 18卷 / 5-6期
关键词
phase field; elastoplasticity; homogenization;
D O I
10.3166/EJCM.18.485-523
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A general constitutive framework is proposed to incorporate linear and nonlinear mechanical behaviour laws into a standard phase field model. In the diffuse interface region where both phases coexist, two mixture rules for strain and stress are introduced, which are based on the Voigt/Taylor and Reuss/Sachs well-known homogenization schemes and compared to the commonly used mixture rules in phase field models. Finite element calculations have been performed considering an elastoplastic precipitate growing in an elastic matrix in order to investigate the plastic accommodation processes.
引用
收藏
页码:485 / 523
页数:39
相关论文
共 48 条
  • [21] Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage
    Forest, Samuel
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2009, 135 (03) : 117 - 131
  • [22] Ganghoffer J., 1994, J PHYS IV, V4
  • [23] Gaubert A., 2008, CONTINUUM MODELS DIS, V11, P161
  • [24] Gaubert A., 2009, PHILOS MAGAZINE
  • [25] CONTINUUM THERMODYNAMICS
    GERMAIN, P
    NGUYEN, QS
    SUQUET, P
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (4B): : 1010 - 1020
  • [26] An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: Smooth specimen
    Guo, X. H.
    Shi, S. Q.
    Zhang, Q. M.
    Ma, X. Q.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2008, 378 (01) : 110 - 119
  • [27] Elastoplastic phase field model for microstructure evolution
    Guo, XH
    Shi, SQ
    Ma, XQ
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (22) : 1 - 3
  • [28] Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance
    Gurtin, ME
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1996, 92 (3-4) : 178 - 192
  • [29] JEULIN D, 2001, CISM COURSES LECT, V430
  • [30] Khachaturyan A. G., 1983, THEORY STRUCTURAL TR