Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?

被引:10
作者
Foley, Finbar [1 ]
Rajagopalan, Srinivasan [2 ]
Raghunath, Sushravya M. [2 ]
Boland, Jennifer M. [3 ]
Karwoski, Ronald A. [4 ]
Maldonado, Fabien [5 ]
Bartholmai, Brian J. [2 ]
Peikert, Tobias [6 ]
机构
[1] Mayo Clin, Div Pulm & Crit Care Med, Gonda Bldg 18 South,200 First St SW, Rochester, MN 55905 USA
[2] Mayo Clin, Coll Med, Dept Radiol, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Pathol, Rochester, MN 55905 USA
[4] Mayo Clin, Biomed Imaging Resource, Rochester, MN 55905 USA
[5] Vanderbilt Univ, Med Ctr, Div Allergy Pulm & Crit Care Med, Nashville, TN USA
[6] Mayo Clin, Dept Pulm & Crit Care Med, Rochester, MN 55905 USA
关键词
lung adenocarcinoma; risk stratification; quantitative image analytics; lung cancer screening; pulmonary nodule;
D O I
10.1053/j.semtcvs.2015.12.015
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Increased clinical use of chest high-resolution computed tomography results in increased identification of lung adenocarcinomas and persistent subsolid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to noninvasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semiquantitative measures to decrease interrater and intrarater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still suboptimal, require validation and are not yet clinically applicable. The computer-aided nodule assessment and risk yield software application represents a validated tool for the automated, quantitative, and noninvasive tool for risk stratification of adenocarcinoma lung nodules. Computer-aided nodule assessment and risk yield correlates well with consensus histology and postsurgical patient outcomes, and therefore may help to guide individualized patient management, for example, in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy. © 2016 Elsevier Inc.
引用
收藏
页码:120 / 126
页数:7
相关论文
共 50 条
[1]   Noninvasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer-Aided Nodule Assessment and Risk Yield (CANARY)-A Pilot Study [J].
Maldonado, Fabien ;
Boland, Jennifer M. ;
Raghunath, Sushravya ;
Aubry, Marie Christine ;
Bartholmai, Brian J. ;
deAndrade, Mariza ;
Hartman, Thomas E. ;
Karwoski, Ronald A. ;
Rajagopalan, Srinivasan ;
Sykes, Anne-Marie ;
Yang, Ping ;
Yi, Eunhee S. ;
Robb, Richard A. ;
Peikert, Tobias .
JOURNAL OF THORACIC ONCOLOGY, 2013, 8 (04) :452-460
[2]   Lung Nodule Assessment in Computed Tomography: Precision of Attenuation Measurement Based on Computer-Aided Volumetry [J].
Knoess, N. ;
Hoffmann, B. ;
Fabel, M. ;
Wiese, C. ;
Jochens, A. ;
Bolte, H. ;
Heller, M. ;
Biederer, J. .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2009, 181 (12) :1151-1156
[3]   The Future of Thyroid Nodule Risk Stratification [J].
Burgos, Nydia ;
Ospina, Naykky Singh ;
Sipos, Jennifer A. .
ENDOCRINOLOGY AND METABOLISM CLINICS OF NORTH AMERICA, 2022, 51 (02) :305-321
[4]   Ultrasonography-based radiomics and computer-aided diagnosis in thyroid nodule management: performance comparison and clinical strategy optimization [J].
Xia, Mengwen ;
Song, Fulong ;
Zhao, Yongfeng ;
Xie, Yongzhi ;
Wen, Yafei ;
Zhou, Ping .
FRONTIERS IN ENDOCRINOLOGY, 2023, 14
[5]   Practice toward standardized performance testing of computer-aided detection algorithms for pulmonary nodule [J].
Wang, Hao ;
Tang, Na ;
Zhang, Chao ;
Hao, Ye ;
Meng, Xiangfeng ;
Li, Jiage .
FRONTIERS IN PUBLIC HEALTH, 2022, 10
[6]   Comparison of computer-aided diagnosis performance and radiologist readings on the LIDC pulmonary nodule dataset [J].
Zhao, Luyin ;
Lee, Michael C. ;
Boroczky, Lilla ;
Vloemans, Victor ;
Opfer, Roland .
MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915
[7]   Absolute ground truth-based validation of computer-aided nodule detection and volumetry in low-dose CT imaging [J].
D'hondt, Louise ;
Kellens, Pieter-Jan ;
Torfs, Kwinten ;
Bosmans, Hilde ;
Bacher, Klaus ;
Snoeckx, Annemiek .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2024, 121
[8]   Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning [J].
Zhang, Shikun ;
Sun, Fengrong ;
Wang, Naishun ;
Zhang, Cuicui ;
Yu, Qianlei ;
Zhang, Mingqiang ;
Babyn, Paul ;
Zhong, Hai .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) :995-1007
[9]   Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning [J].
Shikun Zhang ;
Fengrong Sun ;
Naishun Wang ;
Cuicui Zhang ;
Qianlei Yu ;
Mingqiang Zhang ;
Paul Babyn ;
Hai Zhong .
Journal of Digital Imaging, 2019, 32 :995-1007
[10]   False-Positive Malignant Diagnosis of Nodule Mimicking Lesions by Computer-Aided Thyroid Nodule Analysis in Clinical Ultrasonography Practice [J].
Molnar, Krisztian ;
Kalman, Endre ;
Hari, Zsofia ;
Giyab, Omar ;
Gaspar, Tamas ;
Rucz, Karoly ;
Bogner, Peter ;
Toth, Arnold .
DIAGNOSTICS, 2020, 10 (06)