Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?

被引:10
|
作者
Foley, Finbar [1 ]
Rajagopalan, Srinivasan [2 ]
Raghunath, Sushravya M. [2 ]
Boland, Jennifer M. [3 ]
Karwoski, Ronald A. [4 ]
Maldonado, Fabien [5 ]
Bartholmai, Brian J. [2 ]
Peikert, Tobias [6 ]
机构
[1] Mayo Clin, Div Pulm & Crit Care Med, Gonda Bldg 18 South,200 First St SW, Rochester, MN 55905 USA
[2] Mayo Clin, Coll Med, Dept Radiol, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Pathol, Rochester, MN 55905 USA
[4] Mayo Clin, Biomed Imaging Resource, Rochester, MN 55905 USA
[5] Vanderbilt Univ, Med Ctr, Div Allergy Pulm & Crit Care Med, Nashville, TN USA
[6] Mayo Clin, Dept Pulm & Crit Care Med, Rochester, MN 55905 USA
关键词
lung adenocarcinoma; risk stratification; quantitative image analytics; lung cancer screening; pulmonary nodule;
D O I
10.1053/j.semtcvs.2015.12.015
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Increased clinical use of chest high-resolution computed tomography results in increased identification of lung adenocarcinomas and persistent subsolid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to noninvasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semiquantitative measures to decrease interrater and intrarater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still suboptimal, require validation and are not yet clinically applicable. The computer-aided nodule assessment and risk yield software application represents a validated tool for the automated, quantitative, and noninvasive tool for risk stratification of adenocarcinoma lung nodules. Computer-aided nodule assessment and risk yield correlates well with consensus histology and postsurgical patient outcomes, and therefore may help to guide individualized patient management, for example, in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy. © 2016 Elsevier Inc.
引用
收藏
页码:120 / 126
页数:7
相关论文
共 50 条
  • [1] Noninvasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer-Aided Nodule Assessment and Risk Yield (CANARY)-A Pilot Study
    Maldonado, Fabien
    Boland, Jennifer M.
    Raghunath, Sushravya
    Aubry, Marie Christine
    Bartholmai, Brian J.
    deAndrade, Mariza
    Hartman, Thomas E.
    Karwoski, Ronald A.
    Rajagopalan, Srinivasan
    Sykes, Anne-Marie
    Yang, Ping
    Yi, Eunhee S.
    Robb, Richard A.
    Peikert, Tobias
    JOURNAL OF THORACIC ONCOLOGY, 2013, 8 (04) : 452 - 460
  • [2] Lung Nodule Assessment in Computed Tomography: Precision of Attenuation Measurement Based on Computer-Aided Volumetry
    Knoess, N.
    Hoffmann, B.
    Fabel, M.
    Wiese, C.
    Jochens, A.
    Bolte, H.
    Heller, M.
    Biederer, J.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2009, 181 (12): : 1151 - 1156
  • [3] The Future of Thyroid Nodule Risk Stratification
    Burgos, Nydia
    Ospina, Naykky Singh
    Sipos, Jennifer A.
    ENDOCRINOLOGY AND METABOLISM CLINICS OF NORTH AMERICA, 2022, 51 (02) : 305 - 321
  • [4] Ultrasonography-based radiomics and computer-aided diagnosis in thyroid nodule management: performance comparison and clinical strategy optimization
    Xia, Mengwen
    Song, Fulong
    Zhao, Yongfeng
    Xie, Yongzhi
    Wen, Yafei
    Zhou, Ping
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [5] Practice toward standardized performance testing of computer-aided detection algorithms for pulmonary nodule
    Wang, Hao
    Tang, Na
    Zhang, Chao
    Hao, Ye
    Meng, Xiangfeng
    Li, Jiage
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [6] Comparison of computer-aided diagnosis performance and radiologist readings on the LIDC pulmonary nodule dataset
    Zhao, Luyin
    Lee, Michael C.
    Boroczky, Lilla
    Vloemans, Victor
    Opfer, Roland
    MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915
  • [7] Absolute ground truth-based validation of computer-aided nodule detection and volumetry in low-dose CT imaging
    D'hondt, Louise
    Kellens, Pieter-Jan
    Torfs, Kwinten
    Bosmans, Hilde
    Bacher, Klaus
    Snoeckx, Annemiek
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2024, 121
  • [8] Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning
    Zhang, Shikun
    Sun, Fengrong
    Wang, Naishun
    Zhang, Cuicui
    Yu, Qianlei
    Zhang, Mingqiang
    Babyn, Paul
    Zhong, Hai
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) : 995 - 1007
  • [9] Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning
    Shikun Zhang
    Fengrong Sun
    Naishun Wang
    Cuicui Zhang
    Qianlei Yu
    Mingqiang Zhang
    Paul Babyn
    Hai Zhong
    Journal of Digital Imaging, 2019, 32 : 995 - 1007
  • [10] False-Positive Malignant Diagnosis of Nodule Mimicking Lesions by Computer-Aided Thyroid Nodule Analysis in Clinical Ultrasonography Practice
    Molnar, Krisztian
    Kalman, Endre
    Hari, Zsofia
    Giyab, Omar
    Gaspar, Tamas
    Rucz, Karoly
    Bogner, Peter
    Toth, Arnold
    DIAGNOSTICS, 2020, 10 (06)