HERMITE-HADAMARD TYPE INEQUALITIES FOR THE PRODUCT OF (alpha, m)-CONVEX FUNCTIONS

被引:4
|
作者
Yin, Hong-Ping [1 ]
Qi, Feng [2 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
关键词
Hermite-Hadamard type inequality; (alpha; m)-convex function; product; Holder's integral inequality;
D O I
10.35834/mjms/1449161369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors establish some Hermite-Hadamard type inequalities for the product of two (alpha, m)-convex functions.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [31] On some Hermite-Hadamard type inequalities for (s, QC)-convex functions
    Wu, Ying
    Qi, Feng
    SPRINGERPLUS, 2016, 5
  • [32] Integral inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are (α, m)-convex
    Chun, Ling
    INFORMATION TECHNOLOGY AND COMPUTER APPLICATION ENGINEERING, 2014, : 535 - 537
  • [33] HERMITE-HADAMARD TYPE INEQUALITIES VIA m AND (alpha; m) -CONVEXITY
    Tunc, Mevlut
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 475 - 483
  • [34] GENERALIZED HERMITE-HADAMARD INEQUALITIES FOR (α, η, γ, δ ) - p CONVEX FUNCTIONS
    Bilal, Muhammad
    Dragomir, Silvestru sever
    Khan, Asif raza
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2025, 29 (564): : 145 - 186
  • [35] Some Hermite-Hadamard type inequalities for (P, m)-function and quasi m-convex functions
    Kadakal, Mahir
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 78 - 84
  • [36] INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE m-CONVEX
    Set, Erhan
    Ozdemir, M. Emin
    Sarikaya, Mehmet Zeki
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 861 - +
  • [37] Some new integral inequalities of Hermite-Hadamard type for (log, (alpha, m))-convex functions on co-ordinates
    Xi, Bo-Yan
    Qi, Feng
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (04): : 509 - 525
  • [38] On integral inequalities of the Hermite-Hadamard type for co-ordinated (, m(1))-(s, m(2))-convex functions
    Xi, Bo-Yan
    Bai, Shu-Ping
    Qi, Feng
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1505 - 1518
  • [39] SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-GEOMETRICALLY CONVEX FUNCTIONS
    Yin, Hong-Ping
    Wang, Jing-Yu
    Qi, Feng
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 699 - 705
  • [40] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244