NONHOMOGENEOUS FRACTIONAL BURGERS EQUATION

被引:2
|
作者
Buesaquillo, Victor G. [1 ]
Perez, Alejandro [2 ]
Rugeles, Alvaro [1 ]
机构
[1] Univ Narino, Dept Fis, Pasto, Colombia
[2] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico
来源
MOMENTO-REVISTA DE FISICA | 2016年 / 52期
关键词
Burgers equation; fractional calculus;
D O I
10.15446/mo.n52.58889
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this article we study solutions of the nonlinear fractional Burgers equation with a nonhomogeneous term associated with external forces. This equation is a generalization of the nonhomogeneous diffusion equation with an additional term that describes a nonlocal nonlinearity by means of a fractional order derivative of Caputo type. By using a generalized Cole-Hopf transformation, the fractional Burgers equation is mapped to a linear partial differential equation, this formalism allows to deduce analytical solutions. We explore the effects related to the nonhomogeneous term and the order of the fractional derivative.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 50 条
  • [31] On the uniform controllability of the Burgers equation
    Glass, O.
    Guerrero, S.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (04) : 1211 - 1238
  • [32] Burgers' equation in the complex plane
    VandenHeuvel, Daniel J.
    Lustri, Christopher J.
    King, John R.
    Turner, Ian W.
    McCue, Scott W.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
  • [33] A numerical solution of Burgers' equation
    Aksan, EN
    Özdes, A
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) : 395 - 402
  • [34] Reduction operators of Burgers equation
    Pocheketa, Oleksandr A.
    Popovych, Roman O.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (01) : 270 - 277
  • [35] Upscaling of Burgers equation.
    Aldama, Alvaro A.
    Mejia, Miguel A.
    Beckie, Roger
    INGENIERIA HIDRAULICA EN MEXICO, 2009, 24 (04): : 55 - 64
  • [36] A qualocation method for Burgers' equation
    Mantri, Pritam S.
    Nataraj, Neela
    Pani, Amiya K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (01) : 1 - 13
  • [37] A numerical study of the Burgers' equation
    Saka, Buelent
    Dag, Idris
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (04): : 328 - 348
  • [38] A novel approach to Burgers' equation
    Xu, MT
    Duan, Q
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (08): : 589 - 596
  • [39] A Hamiltonian regularization of the Burgers equation
    Bhat, H. S.
    Fetecau, R. C.
    JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (06) : 615 - 638
  • [40] Turbulence for the generalised Burgers equation
    Boritchev, A. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (06) : 957 - 994