NONHOMOGENEOUS FRACTIONAL BURGERS EQUATION

被引:2
|
作者
Buesaquillo, Victor G. [1 ]
Perez, Alejandro [2 ]
Rugeles, Alvaro [1 ]
机构
[1] Univ Narino, Dept Fis, Pasto, Colombia
[2] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico
来源
MOMENTO-REVISTA DE FISICA | 2016年 / 52期
关键词
Burgers equation; fractional calculus;
D O I
10.15446/mo.n52.58889
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this article we study solutions of the nonlinear fractional Burgers equation with a nonhomogeneous term associated with external forces. This equation is a generalization of the nonhomogeneous diffusion equation with an additional term that describes a nonlocal nonlinearity by means of a fractional order derivative of Caputo type. By using a generalized Cole-Hopf transformation, the fractional Burgers equation is mapped to a linear partial differential equation, this formalism allows to deduce analytical solutions. We explore the effects related to the nonhomogeneous term and the order of the fractional derivative.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 50 条
  • [1] Scaling limit solution of a fractional Burgers equation
    Ruiz-Medina, MD
    Angulo, JM
    Anh, VV
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 93 (02) : 285 - 300
  • [3] Stochastic Burgers' equation driven by fractional Brownian motion
    Wang, Guolian
    Zeng, Ming
    Guo, Boling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 210 - 222
  • [4] Efficient Computational Approach for Generalized Fractional KdV–Burgers Equation
    Rida S.Z.
    Hussien H.S.
    International Journal of Applied and Computational Mathematics, 2020, 6 (6)
  • [5] Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow
    Xiao-Jun Yang
    J. A. Tenreiro Machado
    Jordan Hristov
    Nonlinear Dynamics, 2016, 84 : 3 - 7
  • [6] Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    Yang, Xiao-Jun
    Machado, J. A. Tenreiro
    Hristov, Jordan
    NONLINEAR DYNAMICS, 2016, 84 (01) : 3 - 7
  • [7] Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation
    Yufeng Xu
    Om P. Agrawal
    Fractional Calculus and Applied Analysis, 2013, 16 : 709 - 736
  • [8] Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation
    Xu, Yufeng
    Agrawal, Om P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 709 - 736
  • [9] Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels
    Khan, Asif
    Akram, Tayyaba
    Khan, Arshad
    Ahmad, Shabir
    Nonlaopon, Kamsing
    AIMS MATHEMATICS, 2023, 8 (01): : 1251 - 1268
  • [10] Self-similar solutions for the fractional viscous Burgers equation in Marcinkiewicz spaces
    de Oliveira, Edmundo Capelas
    Lima, Maria Elismara de Sousa
    Viana, Arlucio
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)