CONDITION OF REGULAR DEGENERATION FOR SINGULARLY PERTURBED SYSTEMS OF LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS

被引:14
|
作者
COOKE, KL
MEYER, KR
机构
关键词
D O I
10.1016/0022-247X(66)90065-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:83 / &
相关论文
共 50 条
  • [21] The Impulsive Solution for a Semi-linear Singularly Perturbed Differential-difference Equation
    Wang, Ai-feng
    Xu, Mei
    Ni, Ming-kang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 333 - 342
  • [22] The impulsive solution for a semi-linear singularly perturbed differential-difference equation
    Ai-feng Wang
    Mei Xu
    Ming-kang Ni
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 333 - 342
  • [23] A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
    Mushahary, P.
    Sahu, S. R.
    Mohapatra, J.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 (02): : 344 - 356
  • [24] Wavelets collocation method for singularly perturbed differential-difference equations arising in control system
    Ahmed, Shahid
    Jahan, Shah
    Ansari, Khursheed J.
    Shah, Kamal
    Abdeljawad, Thabet
    RESULTS IN APPLIED MATHEMATICS, 2024, 21
  • [25] Solving singularly perturbed differential-difference equations arising in science and engineering with Fibonacci polynomials
    Mirzaee, Farshid
    Hoseini, Seyede Fatemeh
    RESULTS IN PHYSICS, 2013, 3 : 134 - 141
  • [26] Parameter uniform numerical method for singularly perturbed differential-difference equations with interior layers
    Rai, Pratima
    Sharma, Kapil K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (16) : 3416 - 3435
  • [27] Numerical Solution of Singularly Perturbed Differential-Difference Equations using Multiple Fitting Factors
    Adilaxmi, M.
    Bhargavi, D.
    Phaneendra, K.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (04): : 681 - 691
  • [28] A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
    Ghassabzade, Fahimeh Akhavan
    Saberi-Nadjafi, Jafar
    Soheili, Ali Reza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (03): : 295 - 311
  • [29] Robust Numerical Method For Singularly Perturbed Two-Parameter Differential-Difference Equations
    Debela, Habtamu Garoma
    Duressa, Gemechis File
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 200 - 209
  • [30] A finite difference method for singularly perturbed differential-difference equations arising from a model of neuronal variability
    Rao, R. Nageshwar
    Chakravarthy, P. Pramod
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2013, 7 (03): : 128 - 136