ON THE PERIOD AND BASE OF A SIGN PATTERN MATRIX

被引:51
作者
LI, ZS
HALL, F
ESCHENBACH, C
机构
关键词
D O I
10.1016/0024-3795(94)90398-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A square sign pattern matrix A (whose entries are +, -, or 0) is said to be powerful if all the powers A(1), A(2), A(3),..., are unambiguously defined. For a powerful pattern A, if A(l) = A(l+p) with l and p minimal, then l is called the base of A and p is called the period of A. We characterize irreducible powerful sign pattern matrices and investigate the period and base of a powerful sign pattern matrix. We also consider some connections with real matrices and give some significant classes of powerful patterns.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 10 条
[1]  
Brualdi RA., 1991, COMBINATORIAL MATRIX
[2]   IDEMPOTENCE FOR SIGN-PATTERN MATRICES [J].
ESCHENBACH, C .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 180 :153-165
[3]  
Eschenbach C.A., 1991, LINEAR MULTILINEAR A, V29, P299
[4]  
ESCHENBACH CA, MAXIMAL K CYCLIC SIG
[5]  
ESCHENBACH CA, IN PRESS LINEAR ALGE
[6]  
Horn R.A, 2012, MATRIX ANAL, V2nd ed.
[7]  
Johnson C.R., 1982, LINEAR MULTILINEAR A, V12, P99
[8]  
Kim KH, 1982, BOOLEAN MATRIX THEOR
[9]  
LUNDGREN JR, 1991, J COMBIN INFORM SYST, V16, P29
[10]  
Minc H., 1988, NONNEGATIVE MATRICES