SLOWLY VARYING JUMP AND TRANSITION PHENOMENA ASSOCIATED WITH ALGEBRAIC BIFURCATION PROBLEMS

被引:122
作者
HABERMAN, R [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
D O I
10.1137/0137006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parameter-dependent equilibrium solutions are analyzed as the parameter slowly varies through critical values corresponding to a bifurcation or to a jump phenomena. At these critical times, interior nonlinear transition layers are necessary. Depending on the particular situation, local scaling analysis yields the first and a second Painleve transcendent among other generic equations. In specific cases the resulting boundary layer solutions either increase algebraically or explode (via a singularity). The algebraic growth corresponds to a smooth transition to a bifurcated equilibrium. When a jump phenomena is expected, an explosion can occur. In this case, the solution of first-order differential equations approaches the equilibrium, describing the slow evolution through such a jump. However, second-order differential equations have finite amplitude oscillations around the new equilibrium.
引用
收藏
页码:69 / 106
页数:38
相关论文
共 22 条
[1]  
ABLOWITZ MJ, 1973, STUD APPL MATH, V52, P51
[2]  
ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P13
[3]   EXACT LINEARIZATION OF A PAINLEVE TRANSCENDENT [J].
ABLOWITZ, MJ ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1977, 38 (20) :1103-1106
[4]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[5]  
Chaikin, 1949, THEORY OSCILLATIONS
[6]  
Cole J. D., 1968, PERTURBATION METHODS
[7]  
HABERMAN R, 1977, STUD APPL MATH, V57, P247
[8]  
Ince EL., 1956, ORDINARY DIFFERENTIA
[9]   A NON-LINEAR EQUATION INCORPORATING DAMPING AND DISPERSION [J].
JOHNSON, RS .
JOURNAL OF FLUID MECHANICS, 1970, 42 :49-&
[10]  
KERVORKIAN J, 1971, SIAM J APPL MATH, V20, P364