A TAU-FUNCTION OF THE FINITE NONPERIODIC TODA LATTICE

被引:10
作者
NAKAMURA, Y
机构
[1] Department of Electronics, Doshisha University, Tanabe, Kyoto
关键词
D O I
10.1016/0375-9601(94)90040-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A tau-function for the finite nonperiodic Toda lattice of n particles is found to be the determinant of a totally positive symmetric Wronskian matrix of rank n. An asymptotics of the tau-function and an application to a class of soliton equations are also discussed.
引用
收藏
页码:346 / 350
页数:5
相关论文
共 18 条
[1]  
AHIEZER NI, 1962, TRANSL MATH MONOGRAP, V2
[2]   SOME GEOMETRIC QUESTIONS IN THEORY OF LINEAR-SYSTEMS [J].
BROCKETT, RW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) :449-455
[3]  
GANTMACHER FR, 1959, THEORY MATRICES, V2
[4]   THE TRILINEAR EQUATION AS A (2+2)-DIMENSIONAL EXTENSION OF THE (1+1)-DIMENSIONAL RELATIVISTIC TODA LATTICE [J].
HIETARINTA, J ;
SATSUMA, J .
PHYSICS LETTERS A, 1991, 161 (03) :267-273
[5]   SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI EQUATION AND THE TWO-DIMENSIONAL TODA EQUATIONS [J].
HIROTA, R ;
OHTA, Y ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (06) :1901-1904
[7]   EXPLICITLY SOLUBLE SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS RELATED TO CERTAIN TODA LATTICES [J].
KAC, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1975, 16 (02) :160-169
[8]   SOLUTION TO A GENERALIZED TODA LATTICE AND REPRESENTATION THEORY [J].
KOSTANT, B .
ADVANCES IN MATHEMATICS, 1979, 34 (03) :195-338
[9]  
Krishnaprasad P. S., 1979, Ricerche di Automatica, V10, P107
[10]   CANONICAL-TRANSFORMATIONS GENERATED BY SHIFTS IN NONLINEAR LATTICES [J].
LEZNOV, AN ;
SHABAT, AB ;
YAMILOV, RI .
PHYSICS LETTERS A, 1993, 174 (5-6) :397-402