Normal Approximation of Number of Isolated Vertices in a Random Graph

被引:0
|
作者
Punkla, Y. [1 ]
Chaidee, N. [1 ]
机构
[1] Chulalongkorn Univ, Dept Math, Bangkok 10330, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2006年 / 4卷 / 01期
关键词
Random graph; isolated vertices; normal approximation; Stein's method;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give bounds in normal approximation of number of isolated vertices in a random graph on n vertices. The technique we used here is the Stein's method.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Limit distributions of the number of loops in a random configuration graph
    Yu. L. Pavlov
    M. M. Stepanov
    Proceedings of the Steklov Institute of Mathematics, 2013, 282 : 202 - 219
  • [32] On the Chromatic Number of a Random 5-Regular Graph
    Diaz, J.
    Kaporis, A. C.
    Kemkes, G. D.
    Kirousis, L. M.
    Perez, X.
    Wormald, N.
    JOURNAL OF GRAPH THEORY, 2009, 61 (03) : 157 - 191
  • [33] On the number of subgraphs of the Barabasi-Albert random graph
    Ryabchenko, A. A.
    Samosvat, E. A.
    IZVESTIYA MATHEMATICS, 2012, 76 (03) : 607 - 625
  • [34] A non uniform bound for half-normal approximation of the number of returns to the origin of symmetric simple random walk
    Siripraparat, Tatpon
    Neammanee, Kritsana
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (01) : 42 - 54
  • [35] Second-order approximation of exponential random graph models
    Ding, Wen-Yi
    Fang, Xiao
    SCIENCE CHINA-MATHEMATICS, 2025,
  • [36] On the accuracy of the normal approximation for sums of independent random variables
    I. G. Shevtsova
    Doklady Mathematics, 2012, 85 : 274 - 278
  • [37] On the accuracy of the normal approximation for sums of independent random variables
    Shevtsova, I. G.
    DOKLADY MATHEMATICS, 2012, 85 (02) : 274 - 278
  • [38] On normal approximation of discounted and strongly mixing random variables
    Sunklodas, J.
    LITHUANIAN MATHEMATICAL JOURNAL, 2007, 47 (03) : 327 - 335
  • [39] Normal approximation for the net flux through a random conductor
    Nolen J.
    Stochastics and Partial Differential Equations: Analysis and Computations, 2016, 4 (3): : 439 - 476
  • [40] On normal approximation of discounted and strongly mixing random variables
    J. Sunklodas
    Lithuanian Mathematical Journal, 2007, 47 : 327 - 335