SOME APPLICATIONS OF THE EULER-JACOBI FORMULA TO DIFFERENTIAL-EQUATIONS

被引:14
作者
CIMA, A [1 ]
GASULL, A [1 ]
MANOSAS, F [1 ]
机构
[1] UNIV AUTONOMA BARCELONA,FAC CIENCIES,DEPT MATEMAT,E-08193 BARCELONA,SPAIN
关键词
DIFFERENTIAL EQUATION; CRITICAL POINT; EULER JACOBI FORMULA; CENTER POINT;
D O I
10.2307/2160021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Euler-Jacobi formula gives an algebraic relation between the critical points of a vector field and their indices. Using this formula we obtain an upper bound for the number of centers that a planar polynomial differential equation can have and study the distribution of the critical points for planar quadratic and cubic differential equations.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 13 条
[1]  
Arnold V., 1982, SINGULARITES APPLICA
[2]  
Berlinskii A. N., 1960, IZV VYSS UCEBN ZAVED, V2, P3
[3]  
BRIESKORN E, 1986, PLANE ALGEBRAIC CURV
[4]  
CHICONE C, 1982, AM MATH MONTHLY, V81, P167
[5]   CONFIGURATIONS OF FANS AND NESTS OF LIMIT-CYCLES FOR POLYNOMIAL VECTOR-FIELDS IN THE PLANE [J].
CIMA, A ;
LLIBRE, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 82 (01) :71-97
[6]  
CIMA A, IN PRESS J DIFFERENT
[7]   A SURVEY OF QUADRATIC SYSTEMS [J].
COPPEL, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1966, 2 (03) :293-&
[8]  
Fulton W., 1969, ALGEBRAIC CURVES
[9]  
Griffiths P, 1978, PRINCIPLES ALGEBRAIC
[10]  
Khovanskii A.G., 1979, FUNKT ANAL PRIL, V13, P49, DOI DOI 10.1007/BF01076438