In the last two decades, localized antibiotic therapy has emerged as an important approach to treating orthopedic infections. This paper describes the preparation and in vitro evaluation of biodegradable, poly(L-lactic acid), implants for localized delivery of gentamicin sulfate for the treatment of osteomyelitis. Cylindrical, poly(L-lactic acid) implants containing gentamicin sulfate were obtained by compression of microcapsules prepared by a nonsolvent-induced, coacervation process. Mean particle size distributions of the microcapsules, based on volume, ranged from 278 to 444-mu-m. The gentamicin sulfate loading of the microcapsules, after a methylene chloride-water extraction procedure, exceeded 95% of the theoretical value. In vitro dissolution studies on microcapsules and implants with drug loading varying from 5 to 67% w/w indicated that the rate of gentamicin sulfate released from both microcapsules and implants increased, while the dissolution half-life (T50) decreased, exponentially, with an increase in drug loading. Profiles of amount of drug dissolved at different times followed a square-root-time relationship. All batches of microcapsules and implants released greater than 80% gentamicin sulfate within 3 weeks. In comparison, previous studies in this laboratory have indicated that conventional, nonbiodegradable polymethylmethacrylate implants, containing gentamicin or tobramycin, show incomplete and poorly controlled drug release during the same time period.