LOCAL CONVERGENCE OF SECANT METHODS FOR NONLINEAR CONSTRAINED OPTIMIZATION

被引:28
作者
FONTECILLA, R [1 ]
机构
[1] UNIV MARYLAND,INST ADV COMP STUDIES,COLLEGE PK,MD 20742
关键词
D O I
10.1137/0725042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:692 / 712
页数:21
相关论文
共 19 条
[1]  
Broyden C. G., 1973, Journal of the Institute of Mathematics and Its Applications, V12, P223
[2]   CONTINUITY OF THE NULL SPACE BASIS AND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
SCHNABEL, RB .
MATHEMATICAL PROGRAMMING, 1986, 35 (01) :32-41
[3]  
BYRD RH, UNPUB SIAM J NUMER A
[4]   ON THE LOCAL CONVERGENCE OF A QUASI-NEWTON METHOD FOR THE NONLINEAR-PROGRAMMING PROBLEM [J].
COLEMAN, TF ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :755-769
[5]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[6]   CONVERGENCE THEOREMS FOR LEAST-CHANGE SECANT UPDATE METHODS [J].
DENNIS, JE ;
WALKER, HF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) :949-987
[7]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1
[8]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[9]   A CONVERGENCE THEORY FOR A CLASS OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION [J].
FONTECILLA, R ;
STEIHAUG, T ;
TAPIA, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1133-1151
[10]  
GABAY D, 1982, MATH PROGRAM STUD, V16, P18