On the Darboux Property in the Multivalued Case

被引:0
|
作者
Gavrilut, Alina [1 ]
Croitoru, Anca [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Bd Carol I 11, Iasi 700506, Romania
来源
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES | 2008年 / 35卷
关键词
Pseudo-atom; atom; non-atomic; Darboux property; multimeasure; multisubmeasure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the concepts of atom, pseudo-atom, non-atomicity and the Darboux property for multivalued set functions. We establish the relationships between the Darboux property and non-atomicity and we point out the differences which appear here from the case of set functions. We prove that the range of a multimeasure having the Darboux property is a convex set.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 50 条
  • [1] Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions
    Gavrilut, Alina
    FUZZY SETS AND SYSTEMS, 2009, 160 (09) : 1308 - 1317
  • [2] ON DARBOUX PROPERTY OF FUZZY MULTIMEASURES
    Mastorakis, Nikos E.
    Gavrilut, Alina
    Croitoru, Anca
    Apreutesei, Gabriela
    FS'09: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, 2009, : 54 - +
  • [3] Pseudo-atoms and Darboux property for set multifunctions
    Gavrilut, Alina
    Croitoru, Anca
    FUZZY SETS AND SYSTEMS, 2010, 161 (22) : 2897 - 2908
  • [4] ON THE PATH DARBOUX PROPERTY
    Marciniak, Mariola
    REAL ANALYSIS EXCHANGE, 2008, 34 (02) : 531 - 540
  • [5] ON SOME MODIFICATION OF DARBOUX PROPERTY
    Ivanova, Gertruda
    Wagner-Bojakowska, Elzbieta
    MATHEMATICA SLOVACA, 2016, 66 (01) : 79 - 88
  • [6] A NOTE ON THE DARBOUX PROPERTY OF FRECHET DERIVATIVES
    Holick, P.
    Weil, C. E.
    Zajicek, L.
    REAL ANALYSIS EXCHANGE, 2006, 32 (02) : 489 - 494
  • [7] POROSITY AND THE DARBOUX PROPERTY OF FRECHET DERIVATIVES
    Kurka, Ondrej
    Pokorny, Dusan
    REAL ANALYSIS EXCHANGE, 2008, 34 (02) : 319 - 331
  • [8] Families of Darboux functions and topology having (J*)-property
    Ivanova, Gertruda
    Karasinska, Aleksandra
    Wagner-Bojakowska, Elbieta
    TOPOLOGY AND ITS APPLICATIONS, 2019, 258 : 534 - 542
  • [9] FUNCTIONS HAVING THE DARBOUX PROPERTY AND SATISFYING SOME FUNCTIONAL EQUATION
    Jablonska, Eliza
    COLLOQUIUM MATHEMATICUM, 2009, 114 (01) : 113 - 118
  • [10] THE DARBOUX PROPERTY FOR POLYNOMIALS IN GOLOMB'S AND KIRCH'S TOPOLOGIES
    Szczuka, Paulina
    DEMONSTRATIO MATHEMATICA, 2013, 46 (02) : 429 - 435