TOPOLOGICALLY QUASI-HAMILTONIAN GROUPS

被引:8
|
作者
KUMMICH, F [1 ]
机构
[1] UNIV ERLANGEN NURNBERG,INST MATH,D-8520 ERLANGEN,FED REP GER
关键词
D O I
10.1007/BF01220425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:392 / 397
页数:6
相关论文
共 50 条
  • [21] Hamiltonian and quasi-Hamiltonian systems, Nambu-Poisson structures and symmetries
    Carinena, Jose F.
    Guha, Partha
    Ranada, Manuel F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (33)
  • [22] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    Weiqiu Zhu
    Zuguang Ying
    Science in China Series A: Mathematics, 1999, 42 : 1213 - 1219
  • [23] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    朱位秋
    应祖光
    Science China Mathematics, 1999, (11) : 1213 - 1219
  • [24] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    朱位秋
    应祖光
    ScienceinChina,SerA., 1999, Ser.A.1999 (11) : 1213 - 1219
  • [25] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    Zhu, WQ
    Ying, ZG
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (11): : 1213 - 1219
  • [26] A quasi-Hamiltonian discretization of the thermal shallow water equations
    Eldred, Christopher
    Dubos, Thomas
    Kritsikis, Evaggelos
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 379 : 1 - 31
  • [27] Quasi-Hamiltonian Structure Associated with an Integrable Coupling System
    Luo Lin
    Fan En-Gui
    CHINESE PHYSICS LETTERS, 2009, 26 (05)
  • [28] Dirac operators on quasi-Hamiltonian G-spaces
    Song, Yanli
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 106 : 70 - 86
  • [29] Generalized Hamiltonian norm, Lyapunov exponent and stochastic stability for quasi-Hamiltonian systems
    Ying, ZG
    PHYSICS LETTERS A, 2004, 333 (3-4) : 271 - 276
  • [30] A minimax optimal control strategy for uncertain quasi-Hamiltonian systems
    Wang, Yong
    Ying, Zu-guang
    Zhu, Wei-qiu
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (07): : 950 - 954