STOCHASTIC ONLINE KNAPSACK-PROBLEMS

被引:90
作者
MARCHETTISPACCAMELA, A
VERCELLIS, C
机构
[1] POLITECN MILAN,DIPARTIMENTO ECON & PROD,I-20133 MILAN,ITALY
[2] UNIV ROMA LA SAPIENZA,DIPARTIMENTO INFORMAT & SISTEMIST,ROME,ITALY
关键词
KNAPSACK PROBLEMS; ONLINE ALGORITHMS; STOCHASTIC INTEGER PROGRAMMING;
D O I
10.1007/BF01585758
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Different classes of on-line algorithms are developed and analyzed for the solution of {0, 1} and relaxed stochastic knapsack problems, in which both profit and size coefficients are random variables. In particular, a linear time on-line algorithm is proposed for which the expected difference between the optimum and the approximate solution value is O(log(3/2) n). An Omega(1) lower bound on the expected difference between the optimum and the solution found by any on-line algorithm is also shown to hold.
引用
收藏
页码:73 / 104
页数:32
相关论文
共 19 条
  • [1] Breiman L., 1968, PROBABILITY
  • [2] MULTI-CONSTRAINED MATROIDAL KNAPSACK-PROBLEMS
    CAMERINI, PM
    MAFFIOLI, F
    VERCELLIS, C
    [J]. MATHEMATICAL PROGRAMMING, 1989, 45 (02) : 211 - 231
  • [3] Chung K. L., 1974, COURSE PROBABILITY T
  • [4] COFFMAN E, 1986, 18TH P ANN ACM S THE, P77
  • [5] ANALYSIS OF HEURISTICS FOR STOCHASTIC-PROGRAMMING - RESULTS FOR HIERARCHICAL SCHEDULING PROBLEMS
    DEMPSTER, MAH
    FISHER, ML
    JANSEN, L
    LAGEWEG, BJ
    LENSTRA, JK
    KAN, HGR
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1983, 8 (04) : 525 - 537
  • [6] PROBABILISTIC ANALYSIS OF THE MULTIDIMENSIONAL KNAPSACK-PROBLEM
    DYER, ME
    FRIEZE, AM
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (01) : 162 - 176
  • [7] GOLDBERG AV, 1984, 16TH P ANN ACM S THE, P359
  • [8] HOEFFDING W, 1963, J AM STAT ASSOC, V3, P13
  • [9] Horowitz E., 1978, FUNDAMENTALS COMPUTE
  • [10] FAST APPROXIMATION ALGORITHMS FOR KNAPSACK AND SUM OF SUBSET PROBLEMS
    IBARRA, OH
    KIM, CE
    [J]. JOURNAL OF THE ACM, 1975, 22 (04) : 463 - 468