EXACT QUANTUM-THEORY OF A TIME-DEPENDENT BOUND QUADRATIC HAMILTONIAN SYSTEM

被引:66
作者
YEON, KH
LEE, KK
UM, CI
GEORGE, TF
PANDEY, LN
机构
[1] KOREA UNIV, COLL SCI, DEPT PHYS, SEOUL 136701, SOUTH KOREA
[2] WASHINGTON STATE UNIV, DEPT PHYS, PULLMAN, WA 99164 USA
[3] WASHINGTON STATE UNIV, DEPT CHEM, PULLMAN, WA 99164 USA
来源
PHYSICAL REVIEW A | 1993年 / 48卷 / 04期
关键词
D O I
10.1103/PhysRevA.48.2716
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using the path-integral method, the propagator, the wave function, and the expectation values are evaluated explicitly for a time-dependent bound quadratic Hamiltonian system. We also have derived the relation between the wave function and a dynamical invariant which determines whether or not the system is bound. The expectation value of the quantum-mechanical invariant obeys the uncertainty relation with an auxiliary condition as the solution of the classical equation of the system.
引用
收藏
页码:2716 / 2720
页数:5
相关论文
共 27 条
  • [1] CREATING MULTIPHASE COHERENT STATES IN A DAMPED ANHARMONIC-OSCILLATOR
    BRISUDOVA, MM
    [J]. PHYSICAL REVIEW A, 1992, 46 (03): : 1696 - 1699
  • [2] EXACT SOLUTION OF A TIME-DEPENDENT QUANTAL HARMONIC OSCILLATOR WITH A SINGULAR PERTURBATION
    CAMIZ, P
    GERARDI, A
    MARCHIORO, C
    PRESUTTI, E
    SCACCIATELLI, E
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (10) : 2040 - +
  • [3] EXACT EVALUATION OF THE PROPAGATOR FOR THE DAMPED HARMONIC-OSCILLATOR
    CHENG, BK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12): : 2475 - 2484
  • [4] QUANTUM DAMPED OSCILLATOR IN A MAGNETIC-FIELD
    DODONOV, VV
    MANKO, OV
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 130 (1-2) : 353 - 366
  • [5] COHERENT STATES AND THE RESONANCE OF A QUANTUM DAMPED OSCILLATOR
    DODONOV, VV
    MANKO, VI
    [J]. PHYSICAL REVIEW A, 1979, 20 (02) : 550 - 560
  • [6] REGULAR WINDOW STRUCTURE OF A DOUBLE-WELL DUFFING OSCILLATOR
    ENGLISCH, V
    LAUTERBORN, W
    [J]. PHYSICAL REVIEW A, 1991, 44 (02): : 916 - 924
  • [7] Erdelyi A., 1953, HIGHER TRANSCENDENTA, V2, P194
  • [8] FEYNMAN RP, 1965, QUANTUM MECHANICS PA, pCH3
  • [9] DYNAMICS OF SU(1,1) COHERENT STATES DRIVEN BY A DAMPED HARMONIC-OSCILLATOR
    GERRY, CC
    MA, PK
    VRSCAY, ER
    [J]. PHYSICAL REVIEW A, 1989, 39 (02): : 668 - 674
  • [10] PERSISTENT PROPERTIES OF CRISES IN A DUFFING OSCILLATOR
    KAO, YH
    HUANG, JC
    GOU, YS
    [J]. PHYSICAL REVIEW A, 1987, 35 (12): : 5228 - 5232