SURFACE ROUGHENING WITH QUENCHED DISORDER IN d-DIMENSIONS

被引:10
作者
Buldyrev, Sergey V. [1 ,2 ]
Havlin, Shlomo [1 ,2 ,3 ]
Kertesz, Janos [4 ]
Shehter, Arkady [3 ]
Stanley, H. Eugene [1 ,2 ]
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[4] Tech Univ Budapest, Inst Phys, H-1521 Budapest 11, Hungary
关键词
D O I
10.1142/S0218348X9300085X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review recent numerical simulations of several models of interface growth in d-dimensional media with quenched disorder. These models belong to the universality class of anisotropic diode-resistor percolation networks. The values of the roughness exponent alpha = 0.63 0.01 (d =1+1) and alpha = 0.48 +/- 0.02 (d = 2 + 1) are in good agreement with our recent experiments. We study also the diode-resistor percolation on a Cayley tree. We find that P-infinity similar to exp(-A/root p(c)-p), thus suggesting that the critical exponent for P-infinity similar to (p(c)-p)(beta p) , beta(p) = infinity and that the upper critical dimension in this problem is d = d(c) = infinity. Other critical exponents on the Cayley tree are: tau = 3, v(parallel to) = nu(perpendicular to) = gamma = sigma = 0. The exponents related to roughness are: alpha = beta = 0, z = 2.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 47 条
[1]  
BARABASI AL, 1992, SURFACE DISORDERING
[2]  
Buldyrev S. V., IN PRESS
[3]   ANISOTROPIC PERCOLATION AND THE D-DIMENSIONAL SURFACE ROUGHENING PROBLEM [J].
BULDYREV, SV ;
HAVLIN, S ;
STANLEY, HE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) :200-211
[4]   ANOMALOUS INTERFACE ROUGHENING IN POROUS-MEDIA - EXPERIMENT AND MODEL [J].
BULDYREV, SV ;
BARABASI, AL ;
CASERTA, F ;
HAVLIN, S ;
STANLEY, HE ;
VICSEK, T .
PHYSICAL REVIEW A, 1992, 45 (12) :R8313-R8316
[5]   ANOMALOUS INTERFACE ROUGHENING IN 3D POROUS-MEDIA - EXPERIMENT AND MODEL [J].
BULDYREV, SV ;
BARABASI, AL ;
HAVLIN, S ;
KERTESZ, J ;
STANLEY, HE ;
XENIAS, HS .
PHYSICA A, 1992, 191 (1-4) :220-226
[6]  
Bunde A., 1991, FRACTALS DISORDERED
[7]   DYNAMICS OF SURFACE ROUGHENING IN DISORDERED MEDIA [J].
CSAHOK, Z ;
HONDA, K ;
SOMFAI, E ;
VICSEK, M ;
VICSEK, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) :136-154
[8]   EXPERIMENTAL-EVIDENCE FOR SELF-AFFINE ROUGHENING IN A MICROMODEL OF GEOMORPHOLOGICAL EVOLUTION [J].
CZIROK, A ;
SOMFAI, E ;
VICSEK, T .
PHYSICAL REVIEW LETTERS, 1993, 71 (13) :2154-2157
[9]   DUALITY TRANSFORMATIONS FOR TWO-DIMENSIONAL DIRECTED PERCOLATION AND RESISTANCE PROBLEMS [J].
DHAR, D ;
BARMA, M ;
PHANI, MK .
PHYSICAL REVIEW LETTERS, 1981, 47 (18) :1238-1241
[10]   FRACTAL ASPECTS OF THE SWISS LANDSCAPE [J].
DIETLER, G ;
ZHANG, YC .
PHYSICA A, 1992, 191 (1-4) :213-219