ON TOURNAMENT MATRICES

被引:11
作者
SHADER, BL [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
D O I
10.1016/0024-3795(92)90384-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a tournament of order n with adjacency matrix M. We find several conditions that are equivalent to M being singular. A correlation between the number of 3-cycles in T and the rank of M is established. It is shown that asymptotically at least 1/2 of the tournament matrices are nonsingular. We also derive bounds on the spectral radius of tournament matrices with a given row-sum vector,
引用
收藏
页码:335 / 368
页数:34
相关论文
共 18 条
[1]  
BRAUER A, 1968, B AM MATH SOC, V74, P1133, DOI 10.1090/S0002-9904-1968-12079-8
[2]  
Brauer A., 1972, LINEAR ALGEBRA APPL, V5, P311
[3]  
DECAEN D, 1988, IN PRESS AM MATH MON
[4]  
DECAEN D, 1989, SIAM J DISCRETE MATH, V2, P48
[5]   ADDRESSING PROBLEM FOR LOOP SWITCHING [J].
GRAHAM, RL ;
POLLAK, HO .
BELL SYSTEM TECHNICAL JOURNAL, 1971, 50 (08) :2495-+
[6]  
GRAHAM RL, 1973, SPRINGER LECT NOTES, V303, P99
[7]  
KATZENBERGER GS, 1990, C NUMER, V72, P71
[8]  
KENDALL MG, 1940, BIOMETRIKA, V34, P239
[9]  
Komlos J., 1967, STUDIA SCI MATH HUNG, V2, P7
[10]  
LANDAU H. G., 1953, BULL MATH BIOPHYS, V15, P143, DOI 10.1007/BF02476378