ALMOST EVERYWHERE SUMMABILITY OF LAGUERRE SERIES

被引:44
作者
STEMPAK, K
机构
关键词
LAGUERRE EXPANSIONS; GENERALIZED TWISTED CONVOLUTION; RIESZ; CESARO AND ABEL-POISSON MEANS;
D O I
10.4064/sm-100-2-129-147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions l(n)a(x) = (n!/GAMMA(n + a + 1))1/2e(-x/2)L(n)a(x), n = 0, 1, 2,..., in L2(R+, x(a)dx), a greater-than-or-equal-to 0. We prove that the Cesaro means of order delta > a+2/3 of any function f is-an-element-of L(p)(x(a)dx), 1 less-than-or-equal-to p less-than-or-equal-to infinity, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.
引用
收藏
页码:129 / 147
页数:19
相关论文
共 21 条
  • [1] Askey R., 1965, AM J MATH, V87, P695, DOI DOI 10.2307/2373069
  • [2] ASKEY R, 1963, MATH SCAND, V12, P167
  • [3] ON ABEL SUMMABILITY OF MULTIPLE LAGUERRE SERIES
    CALDERON, CP
    [J]. STUDIA MATHEMATICA, 1969, 33 (03) : 273 - &
  • [4] COIFMAN RR, 1971, LECTURE NOTES MATH, V242
  • [5] DLUGOSZ J, 1985, STUD MATH, V82, P199
  • [6] GORLICH E, 1979, COMMENT MATH PRACE M, V2, P139
  • [7] GORLICH E, 1982, INDAG MATH, V44, P161
  • [8] GREUD G, 1965, STUD MATH, V25, P373
  • [9] MARKETT C, 1981, APPROXIMATION FUNCTI, P419
  • [10] MARKETT C, 1984, INDAG MATH, V46, P299