A STRONG LAW OF LARGE NUMBERS FOR FUZZY RANDOM SETS

被引:52
作者
INOUE, H
机构
[1] Science University of Tokyo, Hokkaido, 049-35, Oshamanbe
关键词
FUZZY RANDOM SET; LEVEL SET; RANDOM SET; COMPACT UNIFORM INTEGRABILITY;
D O I
10.1016/0165-0114(91)90132-A
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An SLLN for fuzzy random variables in R(p) including other convergence theorems has been proved by Klement, Puri and Ralescu. The present paper is motivated by the definitions and properties developed by Puri and Ralescu and concerned with an SLLN for Banach spaced valued fuzzy random sets as an easy application of the previous results.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 19 条
[1]   STRONG LAW OF LARGE NUMBERS FOR RANDOM COMPACT SETS [J].
ARTSTEIN, Z ;
VITALE, RA .
ANNALS OF PROBABILITY, 1975, 3 (05) :879-882
[2]   CONVEXIFICATION IN LIMIT LAWS OF RANDOM SETS IN BANACH-SPACES [J].
ARTSTEIN, Z ;
HANSEN, JC .
ANNALS OF PROBABILITY, 1985, 13 (01) :307-309
[3]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[4]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[5]  
DEBREU G, 1966, 5TH P BERK S MATH ST, V2, P351
[6]  
GINE E, 1983, LECT NOTES MATH, V990, P112
[7]   LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES [J].
KLEMENT, EP ;
PURI, ML ;
RALESCU, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :171-182
[8]   THE STRONG LAW OF LARGE NUMBERS FOR FUZZY RANDOM-VARIABLES [J].
KRUSE, R .
INFORMATION SCIENCES, 1982, 28 (03) :233-241
[9]   FUZZY RANDOM-VARIABLES .2. ALGORITHMS AND EXAMPLES FOR THE DISCRETE CASE [J].
KWAKERNAAK, H .
INFORMATION SCIENCES, 1979, 17 (03) :253-278
[10]   FUZZY RANDOM-VARIABLES .1. DEFINITIONS AND THEOREMS [J].
KWAKERNAAK, H .
INFORMATION SCIENCES, 1978, 15 (01) :1-29