COMPUTING SUBFIELDS IN ALGEBRAIC NUMBER-FIELDS

被引:17
作者
DIXON, JD
机构
[1] Department of Mathematics and Statistics, Carleton University
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1990年 / 49卷
关键词
D O I
10.1017/S1446788700032432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K : = Q-(alpha) be an algebraic number field which is given by specifying the minimal polynomial f(X) for alpha over Q. We describe a procedure for finding the subfields L of K by constructing pairs (w(X), g(X)) of polynomials over Q such that L = Q(w(alpha)) and g(X) is the minimal polynomial for w(alpha). The construction uses local information obtained from the Frobenius-Chebotarev theorem about the Galois group Gal(f), and computations over p-adic extensions of Q.
引用
收藏
页码:434 / 448
页数:15
相关论文
共 27 条
  • [1] ABBOTT JA, 1988, LECTURE NOTES COMPUT, V296
  • [2] Borevich ZI, 1966, NUMBER THEORY
  • [3] BRADFORD RJ, 1988, THESIS BATH U BATH
  • [4] THE TRANSITIVE GROUPS OF DEGREE UP TO 11
    BUTLER, G
    MCKAY, J
    [J]. COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) : 863 - 911
  • [5] EXACT SOLUTION OF LINEAR-EQUATIONS USING P-ADIC EXPANSIONS
    DIXON, JD
    [J]. NUMERISCHE MATHEMATIK, 1982, 40 (01) : 137 - 141
  • [6] POLYNOMIALS WITH PSL(2,7) AS GALOIS GROUP
    ERBACH, DW
    FISCHER, J
    MCKAY, J
    [J]. JOURNAL OF NUMBER THEORY, 1979, 11 (01) : 69 - 75
  • [7] FINCKE U, 1985, MATH COMPUT, V44, P463, DOI 10.1090/S0025-5718-1985-0777278-8
  • [8] KALTOFEN E, 1983, LECTURE NOTES COMPUT, V162
  • [9] Kaplansky I., 1969, FIELDS RINGS
  • [10] BOUND FOR THE LEAST PRIME IDEAL IN THE CHEBOTAREV DENSITY THEOREM
    LAGARIAS, JC
    MONTGOMERY, HL
    ODLYZKO, AM
    [J]. INVENTIONES MATHEMATICAE, 1979, 54 (03) : 271 - 296