Machine Learning and Deep Learning Based Methods Toward Industry 4.0 Predictive Maintenance in Induction Motors: A State of the Art Survey

被引:0
|
作者
Drakaki, Maria [1 ]
Karnavas, Yannis L. [2 ]
Tziafettas, Ioannis A. [2 ]
Linardos, Vasilis [3 ]
Tzionas, Panagiotis [1 ]
机构
[1] Int Hellen Univ, Thermi, Greece
[2] Democritus Univ Thrace, Dept Elect & Comp Engn, Elect Machines Lab, Komotini, Greece
[3] Archeiothiki SA, Athens, Greece
来源
JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT-JIEM | 2022年 / 14卷 / 05期
关键词
predictive maintenance; induction motor; fault detection; fault diagnosis; machine learning; deep learning; Industry; 4.0;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning Based Methods Toward Industry 4.0 Predictive Maintenance in Induction Motors: A State of the Art Survey
    Drakaki, Maria
    Karnavas, Yannis L.
    Tziafettas, Ioannis A.
    Linardos, Vasilis
    Tzionas, Panagiotis
    JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT-JIEM, 2022, 15 (01): : 31 - 57
  • [2] Predictive maintenance in Industry 4.0: a survey of planning models and machine learning techniques
    Hector, Ida
    Panjanathan, Rukmani
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 50
  • [3] Recent Developments Towards Industry 4.0 Oriented Predictive Maintenance in Induction Motors
    Drakaki, Maria
    Karnavas, Yannis L.
    Tzionas, Panagiotis
    Chasiotis, Ioannis D.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING (ISM 2020), 2021, 180 : 943 - 949
  • [4] Machine learning based fault-oriented predictive maintenance in industry 4.0
    Justus, Vivek
    Kanagachidambaresan, G. R.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (01) : 462 - 474
  • [5] MachNet, a general Deep Learning architecture for Predictive Maintenance within the industry 4.0 paradigm
    Jaenal, Alberto
    Ruiz-Sarmiento, Jose-Raul
    Gonzalez-Jimenez, Javier
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [6] Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0
    Cinar, Zeki Murat
    Abdussalam Nuhu, Abubakar
    Zeeshan, Qasim
    Korhan, Orhan
    Asmael, Mohammed
    Safaei, Babak
    SUSTAINABILITY, 2020, 12 (19)
  • [7] Machine Learning Predictive Model for Industry 4.0
    Sitton Candanedo, Ines
    Hernandez Nieves, Elena
    Rodriguez Gonzalez, Sara
    Santos Martin, M. Teresa
    Gonzalez Briones, Alfonso
    KNOWLEDGE MANAGEMENT IN ORGANIZATIONS, KMO 2018, 2018, 877 : 501 - 510
  • [8] Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges
    Dalzochio, Jovani
    Kunst, Rafael
    Pignaton, Edison
    Binotto, Alecio
    Sanyal, Srijnan
    Favilla, Jose
    Barbosa, Jorge
    COMPUTERS IN INDUSTRY, 2020, 123
  • [9] Machine learning based fault-oriented predictive maintenance in industry 4.0
    Vivek Justus
    G. R. Kanagachidambaresan
    International Journal of System Assurance Engineering and Management, 2024, 15 : 462 - 474
  • [10] Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling
    Mazzei, Daniele
    Ramjattan, Reshawn
    SENSORS, 2022, 22 (22)