Regulator Problems on Unbounded Domains Stationarity-Optimal Control-Asymptotic Controllability

被引:1
作者
Pickenhain, Sabine [1 ]
Burtchen, Angie [1 ]
机构
[1] BTU Cottbus Senftenberg, Konrad Wachsmann Allee 1, D-03046 Cottbus, Germany
关键词
Weighted functional spaces; Optimal control; Asymptotic controllability; Infinite horizon;
D O I
10.1007/s10013-018-0304-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of infinite horizon variational and control problems arising from economics, quantum mechanics, and stabilization. Herein, we assume that the objective is of regulator type. The problem setting implies a weighted Sobolev space as the state space. For this class of problems, we establish necessary optimality conditions in a form of a Pontryagin type maximum principle. A duality concept of convex analysis is provided and used to find sufficient optimality conditions and to motivate a dual approximation scheme. We apply the theoretical results to find an asymptotically stabilizing control for a linearized Lotka-Volterra type system.
引用
收藏
页码:837 / 861
页数:25
相关论文
共 33 条
[1]   Needle Variations in Infinite-Horizon Optimal Control [J].
Aseev, S. M. ;
Veliov, V. M. .
VARIATIONAL AND OPTIMAL CONTROL PROBLEMS ON UNBOUNDED DOMAIN, 2014, 619 :1-17
[2]  
Aseev S.M., 2007, P STEKLOV I MATH+, V257, P1, DOI [DOI 10.1134/S0081543807020010, 10.1134/S0081543807020010]
[3]  
Aseev SM., 2012, DYNAM CONT DIS SER B, V19, P43
[4]   SHADOW PRICES AND DUALITY FOR A CLASS OF OPTIMAL-CONTROL PROBLEMS [J].
AUBIN, JP ;
CLARKE, FH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (05) :567-586
[5]  
Carlson D. A., 1991, INFINITE HORIZON OPT, V2nd
[6]  
Dunford N., 1988, LINEAR OPERATORS 1
[7]  
Elstrodt J, 1996, MASS UND INTEGRATION
[8]  
FEICHTINGER G, 1986, OPTIMALE KONTROLLE O
[9]   Pseudospectral methods for solving infinite-horizon optimal control problems [J].
Garg, Divya ;
Hager, William W. ;
Rao, Anil V. .
AUTOMATICA, 2011, 47 (04) :829-837
[10]  
Gopfert A., 1973, MATH OPTIMIERUNG ALL