RELATIVISTIC QUANTUM THEORY FOR FINITE TIME INTERVALS

被引:58
|
作者
STUECKELBERG, ECG
机构
来源
PHYSICAL REVIEW | 1951年 / 81卷 / 01期
关键词
D O I
10.1103/PhysRev.81.130
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [21] Quantum integral inequalities on finite intervals
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [22] RELATIVISTIC QUANTUM FIELD THEORY
    SCHWINGER, J
    SCIENCE, 1966, 153 (3739) : 949 - +
  • [23] Spin in Relativistic Quantum Theory
    Polyzou, W. N.
    Gloeckle, W.
    Witala, H.
    FEW-BODY SYSTEMS, 2013, 54 (11) : 1667 - 1704
  • [24] On the theory of the relativistic quantum particle
    Nikolsky, K
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 22 : 486 - 493
  • [25] Relativistic quantum transport theory
    Elze, AT
    NEW STATES OF MATTER IN HADRONIC INTERACTIONS, 2002, 631 : 229 - 251
  • [26] Time-frequency approach to relativistic correlations in quantum field theory
    Roussel, Benjamin
    Feller, Alexandre
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [27] RELATIVISTIC TIME THEORY
    REICHENBACH, H
    SCIENTIA, 1975, 110 (9-12): : 765 - 775
  • [28] Short time behavior and zeno effect in relativistic quantum field theory
    Alvares-Estrada, RF
    Sanchez-Gomez, JL
    NEW DEVELOPMENTS ON FUNDAMENTAL PROBLEMS IN QUANTUM PHYSICS, 1997, 81 : 11 - 16
  • [29] RELATIVISTIC QUANTUM FIELD THEORY
    SCHWINGER, J
    PHYSICS TODAY, 1966, 19 (06) : 27 - +
  • [30] Spin in Relativistic Quantum Theory
    W. N. Polyzou
    W. Glöckle
    H. Witała
    Few-Body Systems, 2013, 54 : 1667 - 1704