GAUGING SU(N-M)

被引:21
作者
TAYLOR, JG
机构
[1] Department of Mathematics, King's College, London
关键词
D O I
10.1016/0370-2693(79)90653-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a local gauge theory of the graded algebra su( n m). We find the restrictions on the gauge potentials and matter fields in order that a physically suitable gauge invariant lagrangian exists. These conditions are: triviality of fields in extended dimensions, non-extended gauge components only lie in su(n) × su(m), and suitable restrictions satisfied by the extended gauge components. For matter the grading has to be given by chirality. © 1979.
引用
收藏
页码:79 / 82
页数:4
相关论文
共 9 条
[1]   GRADED LIE-ALGEBRAS IN MATHEMATICS AND PHYSICS (BOSE-FERMI SYMMETRY) [J].
CORWIN, L ;
NEEMAN, Y ;
STERNBERG, S .
REVIEWS OF MODERN PHYSICS, 1975, 47 (03) :573-603
[2]   SUPERSYMMETRIC WEINBERG-SALAM MODEL [J].
DONDI, PH ;
JARVIS, PD .
PHYSICS LETTERS B, 1979, 84 (01) :75-78
[3]   HIGGS FIELDS AND THE DETERMINATION OF THE WEINBERG ANGLE [J].
FAIRLIE, DB .
PHYSICS LETTERS B, 1979, 82 (01) :97-100
[4]   IRREDUCIBLE GAUGE THEORY OF A CONSOLIDATED SALAM-WEINBERG MODEL [J].
NEEMAN, Y .
PHYSICS LETTERS B, 1979, 81 (02) :190-194
[5]   GRADED LIE-ALGEBRAS - GENERALIZATION OF HERMITIAN REPRESENTATIONS [J].
SCHEUNERT, M ;
NAHM, W ;
RITTENBERG, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (01) :146-154
[6]  
SQUIRES E, 1979, FEB DURH U PREPR
[7]   ELECTROWEAK THEORY IN SU(2-1) [J].
TAYLOR, JG .
PHYSICS LETTERS B, 1979, 83 (3-4) :331-334
[8]   A MODEL OF LEPTONS [J].
WEINBERG, S .
PHYSICAL REVIEW LETTERS, 1967, 19 (21) :1264-&
[9]  
[No title captured]