STABILIZING HIGHER PERIODIC-ORBITS

被引:19
作者
PASKOTA, M
MEES, AI
TEO, KL
机构
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1994年 / 4卷 / 02期
关键词
D O I
10.1142/S0218127494000319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider stabilization of chaotic dynamical systems onto higher periodic orbits. We give a necessary and sufficient condition for using local linear state feedback control for this purpose. The control is achieved using small, bounded perturbations, and the method proposed is shown to be effective even in the presence of relatively small random dynamical noise.
引用
收藏
页码:457 / 460
页数:4
相关论文
共 10 条
[1]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[2]  
Chen G., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P407, DOI 10.1142/S0218127492000392
[3]   FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS [J].
Chen, Guanrong ;
Dong, Xiaoning .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1363-1409
[4]  
JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
[5]   CONTROLLING CHAOTIC DYNAMIC-SYSTEMS USING TIME-DELAY COORDINATES [J].
NITSCHE, G ;
DRESSLER, U .
PHYSICA D, 1992, 58 (1-4) :153-164
[6]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[7]  
PASKOTA M, 1993, UNPUB DYNAMICS CONTR
[8]   CONTROLLING CHAOTIC DYNAMIC-SYSTEMS [J].
ROMEIRAS, FJ ;
GREBOGI, C ;
OTT, E ;
DAYAWANSA, WP .
PHYSICA D, 1992, 58 (1-4) :165-192
[9]   USING CHAOS TO DIRECT TRAJECTORIES TO TARGETS [J].
SHINBROT, T ;
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3215-3218
[10]  
Vincent T. L., 1991, Dynamics and Control, V1, P35, DOI 10.1007/BF02169423