A globally convergent algorithm for MPCC

被引:5
作者
Kadrani, Abdeslam [1 ]
Dussault, Jean Pierre [2 ]
Benchakroun, Abdelhamid [2 ]
机构
[1] Rabat Inst, INSEA, BP 6217, Rabat 10106, Morocco
[2] Univ Sherbrooke, Dept Informat, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Complementarity constraints; MPCC; Regularization; Penalization; Nonlinear programming;
D O I
10.1007/s13675-015-0044-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a penalty formulation based on the new regularization scheme for mathematical programs with complementarity constraints (MPCCs). We present an active set method which solves a sequence of penalty-regularized problems. We study global convergence properties of the method under the MPCC-linear independence constraint qualification. In particular, any accumulation point of the generated iterates is a strong stationary point if the penalty parameter is bounded. Otherwise, the convergence to points having a certain stationarity property is established. A strategy for updating the penalty parameter is proposed and numerical results on a collection of test problems are reported.
引用
收藏
页码:263 / 296
页数:34
相关论文
共 30 条
[1]   Global convergence of an elastic mode approach for a class of mathematical programs with complementarity constraints [J].
Anitescu, M .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (01) :120-145
[2]   On using the elastic mode in nonlinear programming approaches to mathematical programs with complementarity constraints [J].
Anitescu, M .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) :1203-1236
[3]  
Byrd RH, 1982, PRACTICAL CLASS GLOB
[4]  
Dembo RS, 1983, SERIESB 69, V69
[5]   A TWO-SIDED RELAXATION SCHEME FOR MATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS [J].
Demiguel, V ;
Friedlander, MP ;
Nogales, FJ ;
Scholtes, S .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :587-609
[6]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[7]   A smoothing method for mathematical programs with equilibrium constraints [J].
Facchinei, F ;
Jiang, HY ;
Qi, LQ .
MATHEMATICAL PROGRAMMING, 1999, 85 (01) :107-134
[8]   Local convergence of SQP methods for mathematical programs with equilibrium constraints [J].
Fletcher, R ;
Leyffer, S ;
Ralph, D ;
Scholtes, S .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) :259-286
[9]  
Fletcher R, 2002, NA210 U DUND
[10]  
Fletcher R., 1981, PRACTICAL METHODS OP