FUNDAMENTAL SOLUTION OF THE MODEL EQUATION OF ANOMALOUS DIFFUSION OF FRACTIONAL ORDER

被引:3
作者
Khushtova, F. G. [1 ]
机构
[1] Inst Appl Math & Automat, Dept CAD Mixed Syst & Management, 89 A Shortanova St, Nalchik 360000, Russia
来源
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI | 2015年 / 19卷 / 04期
关键词
anomalous diffusion; diffusion fractional order; Riemann-Liouville operator; fundamental solution; general representation of solution; modified Bessel function; Wright function; integral transformation with Wright function in kernel;
D O I
10.14498/vsgtu1445
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fundamental solution of the model equation of anomalous diffusion with Riemann-Liouville operator is constructed. Using the properties of the integral transformation with Wright function in kernel, we give estimates for the fundamental solution. When the considered equation transformes into the diffusion equation of fractional order, constructed fundamental solution goes into the corresponding fundamental solution of the diffusion equation of fractional order. General solution of the model equation of anomalous diffusion of fractional order is constructed.
引用
收藏
页码:722 / 735
页数:14
相关论文
共 50 条
[31]   Simultaneous uniqueness identification of the fractional order and diffusion coefficient in a time-fractional diffusion equation [J].
Jing, Xiaohua ;
Jia, Junxiong ;
Song, Xueli .
APPLIED MATHEMATICS LETTERS, 2025, 162
[32]   ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS [J].
Kim, Kyeong-Hun ;
Lim, Sungbin .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) :929-967
[33]   A NEW FRACTIONAL DERIVATIVE MODEL FOR THE ANOMALOUS DIFFUSION PROBLEM [J].
Chen, Zhanqing ;
Qiu, Peitao ;
Yang, Xiao-Jun ;
Feng, Yiying ;
Liu, Jiangen .
THERMAL SCIENCE, 2019, 23 :S1005-S1011
[34]   FRACTIONAL DERIVATIVE ANOMALOUS DIFFUSION EQUATION MODELING PRIME NUMBER DISTRIBUTION [J].
Chen, Wen ;
Liang, Yingjie ;
Hu, Shuai ;
Sun, Hongguang .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :789-798
[35]   Fractional derivative anomalous diffusion equation modeling prime number distribution [J].
Wen Chen ;
Yingjie Liang ;
Shuai Hu ;
Hongguang Sun .
Fractional Calculus and Applied Analysis, 2015, 18 :789-798
[36]   Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions [J].
Lenzi, EK ;
Malacarne, LC ;
Mendes, RS ;
Pedron, IT .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 :245-252
[37]   Anomalous heat diffusion from fractional Fokker-Planck equation [J].
Li, Shu-Nan ;
Cao, Bing-Yang .
APPLIED MATHEMATICS LETTERS, 2020, 99
[38]   Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration [J].
Ansari, Alireza ;
Derakhshan, Mohammad Hossein ;
Askari, Hassan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 113
[39]   Variable-order fractional differential operators in anomalous diffusion modeling [J].
Sun, HongGuang ;
Chen, Wen ;
Chen, YangQuan .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (21) :4586-4592
[40]   Studies of Anomalous Diffusion in the Human Brain Using Fractional Order Calculus [J].
Zhou, Xiaohong Joe ;
Gao, Qing ;
Abdullah, Osama ;
Magin, Richard L. .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (03) :562-569