CONJUGATE RESIDUAL METHODS FOR ALMOST SYMMETRICAL LINEAR-SYSTEMS

被引:0
|
作者
MEZA, JC [1 ]
SYMES, WW [1 ]
机构
[1] RICE UNIV,DEPT MATH SCI,HOUSTON,TX 77251
关键词
ITERATIVE METHODS; KRYLOV SUBSPACES; CONJUGATE GRADIENT METHODS; SPARSE MATRICES;
D O I
10.1007/BF00939835
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns the use of conjugate residual methods for the solution of nonsymmetric linear systems arising in applications to differential equations. We focus on an application derived from a seismic inverse problem. The linear system is a small perturbation to a symmetric positive-definite system, the nonsymmetries arising from discretization errors in the solution of certain boundary-value problems. We state and prove a new error bound for a class of generalized conjugate residual methods; we show that, in some cases, the perturbed symmetric problem can be solved with an error bound similar to the one for the conjugate residual method applied to the symmetric problem. We also discuss several applications for special distributions of eigenvalues.
引用
收藏
页码:415 / 440
页数:26
相关论文
共 50 条
  • [41] Krylov Subspace Methods for Linear Infinite-Dimensional Systems
    Harkort, Christian
    Deutscher, Joachim
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (02) : 441 - 447
  • [43] Parallel iterative methods for dense linear systems in inductance extraction
    Mahawar, H
    Sarin, V
    PARALLEL COMPUTING, 2003, 29 (09) : 1219 - 1235
  • [44] On parallel multisplitting methods for symmetric positive semidefinite linear systems
    Cao, Guangxi
    Song, Yongzhong
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (04) : 301 - 318
  • [45] A cooperative conjugate gradient method for linear systems permitting efficient multi-thread implementation
    Amit Bhaya
    Pierre-Alexandre Bliman
    Guilherme Niedu
    Fernando A. Pazos
    Computational and Applied Mathematics, 2018, 37 : 1601 - 1628
  • [46] A cooperative conjugate gradient method for linear systems permitting efficient multi-thread implementation
    Bhaya, Amit
    Bliman, Pierre-Alexandre
    Niedu, Guilherme
    Pazos, Fernando A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02) : 1601 - 1628
  • [47] Convergence Analysis of Modified Iterative Methods to Solve Linear Systems
    Najafi, H. Saberi
    Edalatpanah, S. A.
    Sheikhani, A. H. Refahi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (03) : 1019 - 1032
  • [48] Accelerated PMHSS iteration methods for complex symmetric linear systems
    Zheng, Qing-Qing
    Ma, Chang-Feng
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 501 - 516
  • [49] Parallel multisplitting methods with optimal weighting matrices for linear systems
    Wang, Chuan-Long
    Yan, Xi-Hong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 523 - 532
  • [50] Improving the preconditioning of linear systems from interior point methods
    Casacio, Luciana
    Lyra, Christiano
    Leite Oliveira, Aurelio Ribeiro
    Castro, Cecilia Orellana
    COMPUTERS & OPERATIONS RESEARCH, 2017, 85 : 129 - 138