SMALL PRIME SOLUTIONS OF SOME ADDITIVE EQUATIONS

被引:34
作者
LIU, MC
TSANG, KM
机构
[1] Department of Mathematics, University of Hong Kong, Pokfulam Road
来源
MONATSHEFTE FUR MATHEMATIK | 1991年 / 111卷 / 02期
关键词
D O I
10.1007/BF01332353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Essentially sharp bounds for small prime solutions p(j), q(i) of the following two different types of equations are obtained. a1p1(2) + ... + a5p5(2) = b, c1q1 + c2q2 + c3q3k = d where the two sets of integers, a1, ..., a5, b and c1, c2, c3, d satisfy the congruent solubility condition and k greater-than-or-equal-to 1 is an integer. These results are comparable with the well-known Meyer theorem on indefinite integral quadratic form and the celebrated Vinogradov three primes theorem.
引用
收藏
页码:147 / 169
页数:23
相关论文
共 8 条
[1]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[2]  
GHOSH A, 1981, P LOND MATH SOC, V42, P252
[3]  
Hua L.K., 1965, AM MATH SOC
[4]  
Hua LK., 1938, Q J MATH, V9, P68, DOI [10.1093/qmath/os-9.1.68, DOI 10.1093/QMATH/OS-9.1.68]
[5]  
LIU MC, 1989, J REINE ANGEW MATH, V399, P109
[6]  
LIU MC, 1989, NUMBER THEORY, P595
[7]  
Mordell L. J., 1969, PURE APPL MATH, V30
[8]  
Vinogradov I. M., 1954, ELEMENTS NUMBER THEO