Scanning Dielectric Constant Microscopy for imaging single biological cells

被引:4
作者
Valavade, A. V. [1 ,2 ,3 ]
Date, K. S. [3 ]
Press, M. R. [1 ]
Kothari, D. C. [1 ,3 ]
机构
[1] Univ Mumbai, Dept Phys, Bombay 400098, Maharashtra, India
[2] Xavier Inst Engn, Mahim Causeway, Bombay 400016, Maharashtra, India
[3] Univ Mumbai, Natl Ctr Nanosci & Nanotechnol, Bombay 400098, Maharashtra, India
来源
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS | 2018年 / 4卷 / 05期
关键词
EFM; dielectric constant; biological materials;
D O I
10.1088/2057-1976/aada1c
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A method is developed for obtaining nanoscale dielectric constant maps of any material, using dynamic Electrostatic Force Microscopy (EFM) in conjunction with an analytical model by Hudlet et al for the tip-apex force, modified for dielectric material; and is applied for visualizing dielectric constant variation at sub-cellular level. The method is simple and does not rely on high-end electronics required for sub-attofarad resolution for capacitance measurement or resource intensive computation for specific geometry, but can be applied on available commercial Atomic Force Microscope (AFM). The method is not restricted to obtaining dielectric constant at a single point but it provides the determination of lateral variation in dielectric constant in a sample. The dielectric constant maps obtained using the modified Hudlet tip-apex model are compared with those obtained using the parallel plate and partially-filled parallel plate models. The accuracy of the dielectric constant values depends on the validity of the analytical model used. The dielectric constant values obtained using the modified Hudlet tip-apex model are in agreement with the reported values.
引用
收藏
页数:13
相关论文
共 46 条
  • [1] Monitoring human mesenchymal stromal cell differentiation by electrochemical impedance sensing
    Angstmann, Michael
    Brinkmann, Irena
    Bieback, Karen
    Breitkreutz, Dirk
    Maercker, Christian
    [J]. CYTOTHERAPY, 2011, 13 (09) : 1074 - 1089
  • [2] Characterization of biological cells by dielectric spectroscopy
    Asami, K
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 305 (1-3) : 268 - 277
  • [3] THE SCANNING DIELECTRIC MICROSCOPE
    ASAMI, K
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 1994, 5 (05) : 589 - 592
  • [4] DIELECTRIC IMAGING OF BIOLOGICAL CELLS
    ASAMI, K
    [J]. COLLOID AND POLYMER SCIENCE, 1995, 273 (11) : 1095 - 1097
  • [5] Simulation for the dielectric images of single biological cells obtained using a scanning dielectric microscope
    Asami, Koji
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (08)
  • [6] Real-time characterization of cytotoxicity using single-cell impedance monitoring
    Asphahani, Fareid
    Thein, Myo
    Wang, Kui
    Wood, David
    Wong, Sau Shun
    Xu, Jian
    Zhang, Miqin
    [J]. ANALYST, 2012, 137 (13) : 3011 - 3019
  • [7] Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing
    Bagnaninchi, Pierre O.
    Drummond, Nicola
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (16) : 6462 - 6467
  • [8] Cross-talk artefacts in Kelvin probe force microscopy imaging: A comprehensive study
    Barbet, S.
    Popoff, M.
    Diesinger, H.
    Deresmes, D.
    Theron, D.
    Melin, T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (14)
  • [9] Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions
    Belaidi, S
    Girard, P
    Leveque, G
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 81 (03) : 1023 - 1030
  • [10] ELECTRICAL CHARACTERIZATION OF INTEGRATED-CIRCUITS BY SCANNING FORCE MICROSCOPY
    BOHM, C
    ROTHS, C
    MULLER, U
    BEYER, A
    KUBALEK, E
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1994, 24 (1-3): : 218 - 222