SOME COMBINATORIAL PROPERTIES OF STURMIAN WORDS

被引:125
|
作者
DELUCA, A
MIGNOSI, F
机构
[1] CNR,IST CIBERNET,I-80072 ARCO,ITALY
[2] UNIV PALERMO,DIPARTIMENTO MATEMAT & APPLICAZ,I-90123 PALERMO,ITALY
关键词
Bispecial elements - Combinatorial properties - Palindrome words - Sturman words;
D O I
10.1016/0304-3975(94)00035-H
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we give a characterization of finite Sturmian words, by palindrome words, which generalizes a property of the Fibonacci words. We prove that the set St of finite Sturmian words coincides with the set of the factors of all the words w such that w=AB=Cxy with A,B,C palindromes, x,y is an element of{a,b}, b) and x not equal y. Moreover, using this result we prove that St is equal to the set of the factors of all words w having two periods p and q which are coprimes and such that Absolute value of w greater than or equal to p+q-2. Several other combinatorial properties concerning special and bispecial elements of Sr are shown. As a consequence we give a new, and purely combinatorial, proof of the enumeration formula of St.
引用
收藏
页码:361 / 385
页数:25
相关论文
共 50 条
  • [31] The number of runs in Sturmian words
    Baturo, Pawel
    Pitakowski, Marcin
    Rytter, Wojciech
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, PROCEEDINGS, 2008, 5148 : 252 - 261
  • [32] The Number of Cubes in Sturmian Words
    Piatkowski, Marcin
    Rytter, Wojciech
    PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2012, 2012, : 89 - 102
  • [33] STANDARD FACTORS OF STURMIAN WORDS
    Richomme, Gwenael
    Saari, Kalle
    Zamboni, Luca Q.
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2010, 44 (01): : 159 - 174
  • [34] A Characterization of Bispecial Sturmian Words
    Fici, Gabriele
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 383 - 394
  • [35] On Minimal Sturmian Partial Words
    Blanchet-Sadri, Francine
    Lensmire, John
    28TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2011), 2011, 9 : 225 - 236
  • [36] Lyndon factorization of sturmian words
    Melançon, G
    DISCRETE MATHEMATICS, 2000, 210 (1-3) : 137 - 149
  • [37] Sturmian words and the Stern sequence
    de Luca, Aldo
    De Luca, Alessandro
    THEORETICAL COMPUTER SCIENCE, 2015, 581 : 26 - 44
  • [38] Generalized balances in Sturmian words
    Fagnot, I
    Vuillon, L
    DISCRETE APPLIED MATHEMATICS, 2002, 121 (1-3) : 83 - 101
  • [39] Sturmian words, β-shifts, and transcendence
    Chi, DP
    Kwon, D
    THEORETICAL COMPUTER SCIENCE, 2004, 321 (2-3) : 395 - 404
  • [40] Fractional powers in Sturmian words
    Justin, J
    Pirillo, G
    THEORETICAL COMPUTER SCIENCE, 2001, 255 (1-2) : 363 - 376