On the Expansion of Fibonacci and Lucas Polynomials

被引:0
|
作者
Prodinger, Helmut [1 ]
机构
[1] Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa
关键词
Fibonacci polynomials; Lucas polynomials; generating functions; q-analogues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials using bases of Fibonacci-and Lucas-like polynomials. Here, we provide simplified proofs for the expansion formulae that in essence a computer can do. Furthermore, for 2 of the 5 instances, we find q-analogues.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Lucas Polynomials and Power Sums
    Tamm, Ulrich
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [32] 2-Fibonacci polynomials in the family of Fibonacci numbers
    Ozkan, Engin
    Tastan, Merve
    Aydogdu, Ali
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (03) : 47 - 55
  • [33] Divisors and specializations of Lucas polynomials
    Amdeberhan, Tewodros
    Can, Mahir Bilen
    Jensen, Melanie
    JOURNAL OF COMBINATORICS, 2015, 6 (1-2) : 69 - 89
  • [34] A new generalization of Fibonacci and Lucas type sedenions
    Kizilates, Can
    Kirlak, Selihan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (08): : 2217 - 2228
  • [35] ON QUATERNIONS WITH INCOMPLETE FIBONACCI AND LUCAS NUMBERS COMPONENTS
    Kizilates, Can
    UTILITAS MATHEMATICA, 2019, 110 : 263 - 269
  • [36] Symmetric functions of the k-Fibonacci and k-Lucas numbers
    Boussayoud, Ali
    Kerada, Mohamed
    Araci, Serkan
    Acikgoz, Mehmet
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (03)
  • [37] A characterization of the Chebyshev and Fibonacci polynomials
    Cuccoli M.
    Ricci P.E.
    Rendiconti del Circolo Matematico di Palermo, 1998, 47 (1) : 129 - 140
  • [38] A study of harmonic Fibonacci polynomials associated With Bernoulli-F and Euler-Fibonacci polynomials
    Tuglu, Naim
    Kus, Semra
    Kizilates, Can
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1129 - 1141
  • [39] Bivariate Fibonacci polynomials of order k with statistical applications
    Kiyoshi Inoue
    Sigeo Aki
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 197 - 210
  • [40] Bivariate Fibonacci polynomials of order k with statistical applications
    Inoue, Kiyoshi
    Aki, Sigeo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (01) : 197 - 210