On the Expansion of Fibonacci and Lucas Polynomials

被引:0
|
作者
Prodinger, Helmut [1 ]
机构
[1] Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa
关键词
Fibonacci polynomials; Lucas polynomials; generating functions; q-analogues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials using bases of Fibonacci-and Lucas-like polynomials. Here, we provide simplified proofs for the expansion formulae that in essence a computer can do. Furthermore, for 2 of the 5 instances, we find q-analogues.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] On Generalized Bivariate (p,q)-Bernoulli-Fibonacci Polynomials and Generalized Bivariate (p,q)-Bernoulli-Lucas Polynomials
    Guan, Hao
    Khan, Waseem Ahmad
    Kizilates, Can
    SYMMETRY-BASEL, 2023, 15 (04):
  • [22] On the Lucas polynomials and some of their new identities
    Jin, Zhang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [23] On the Lucas polynomials and some of their new identities
    Zhang Jin
    Advances in Difference Equations, 2018
  • [24] SOME GENERALIZED FIBONACCI AND HERMITE POLYNOMIALS
    Shannon, A. G.
    Deveci, Omur
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (04): : 419 - 427
  • [25] The Fibonacci Polynomials in Rings
    Tasyurdu, Yasemin
    Deveci, Omur
    ARS COMBINATORIA, 2017, 133 : 355 - 366
  • [26] Cube Polynomial of Fibonacci and Lucas Cubes
    Sandi Klavžar
    Michel Mollard
    Acta Applicandae Mathematicae, 2012, 117 : 93 - 105
  • [27] On Convolved Fibonacci Polynomials
    Abd-Elhameed, Waleed Mohamed
    Alqubori, Omar Mazen
    Napoli, Anna
    MATHEMATICS, 2025, 13 (01)
  • [28] Cube Polynomial of Fibonacci and Lucas Cubes
    Klavzar, Sandi
    Mollard, Michel
    ACTA APPLICANDAE MATHEMATICAE, 2012, 117 (01) : 93 - 105
  • [29] Bivariate fibonacci like p-polynomials
    Tuglu, Naim
    Kocer, E. Gokcen
    Stakhov, Alexey
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (24) : 10239 - 10246
  • [30] The Power Sums Involving Fibonacci Polynomials and Their Applications
    Chen, Li
    Wang, Xiao
    SYMMETRY-BASEL, 2019, 11 (05):