On Existence and Stability Results for Nonlinear Fractional Delay Differential Equations

被引:35
作者
Kucche, Kishor D. [1 ]
Sutar, Sagar T. [2 ]
机构
[1] Shivaji Univ, Dept Math, Kolhapur 416004, Maharashtra, India
[2] Raje Ramrao Mahavidyalaya, Dept Math, Sangli 416404, Maharashtra, India
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2018年 / 36卷 / 04期
关键词
Fractional delay differential equation; Fixed point theorem; Existence and uniqueness; Successive approximation; Ulam-Hyers stability; E-alpha-Ulam-Hyers stability;
D O I
10.5269/bspm.v36i4.33603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish existence and uniqueness results for fractional order delay differential equations. It is proved that successive approximation method can also be successfully applied to study Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, generalized Ulam-Hyers-Rassias stability, E-alpha-Ulam-Hyers stability and generalized E-alpha-Ulam-Hyers stability of fractional order delay differential equations.
引用
收藏
页码:55 / 75
页数:21
相关论文
共 24 条
[1]  
Abbas MI, 2015, EUR J PURE APPL MATH, V8, P478
[2]   On approximate solutions of some delayed fractional differential equations [J].
Brzdek, Janusz ;
Eghbali, Nasrin .
APPLIED MATHEMATICS LETTERS, 2016, 54 :31-35
[3]  
Diethelm K., 2010, LECT NOTES MATH
[4]   A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation [J].
Eghbali, Nasrin ;
Kalvandi, Vida ;
Rassias, John M. .
OPEN MATHEMATICS, 2016, 14 :237-246
[5]   Hyers-Ulam Stability of Nonlinear Integral Equation [J].
Gachpazan, Mortaza ;
Baghani, Omid .
FIXED POINT THEORY AND APPLICATIONS, 2010,
[6]  
HALE J.K., 1991, INTRO FUNCTIONAL DIF
[7]  
Henry D., 1993, LECT NOTES MATH, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[8]   Hyers-Ulam stability of delay differential equations of first order [J].
Huang, Jinghao ;
Li, Yongjin .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (01) :60-66
[9]  
Kilbas A.A., 2006, N HOLLAND MATH STUDI
[10]   Theory of Nonlinear Implicit Fractional Differential Equations [J].
Kucche, Kishor D. ;
Nieto, Juan J. ;
Venktesh, Venktesh .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (01) :1-17