This study compares the relative accuracy and consistency of four split-window land surface temperature (LST) algorithms (Becker and Li, Kerr et al., Price, Ulivieri et al.) using 24 sets of Terra (Aqua)/Moderate Resolution Imaging Spectroradiometer (MODIS) data, observed ground grass temperature and air temperature over South Korea. The effective spectral emissivities of two thermal infrared bands have been retrieved by vegetation coverage method using the normalized difference vegetation index. The intercomparison results among the four LST algorithms show that the three algorithms (Becker-Li, Price, and Ulivieri et al.) show very similar performances. The LST estimated by the Becker and Li's algorithm is the highest, whereas that by the Kerr et al.'s algorithm is the lowest without regard to the geographic locations and seasons. The performance of four LST algorithms is significantly better during cold season (night) than warm season (day). And the LST derived from Terra/MODIS is closer to the observed LST than that of Aqua/MODIS. In general, the performances of (Becker-Li and Ulivieri et a) algorithms are systematically better than the others without regard to the day/night, seasons, and satellites. And the root mean square error and bias of Ulivieri et al. algorithm are consistently less than that of Becker-Li for the four seasons.