ISOMORPHISMS BETWEEN QUANTUM GROUP COVARIANT Q-OSCILLATOR SYSTEMS DEFINED FOR Q AND Q(-1)

被引:2
作者
AIZAWA, N
机构
[1] Dept. of Appl. Math., Osaka Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 16期
关键词
D O I
10.1088/0305-4470/28/16/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that there exists an isomorphism between q-oscillator systems covariant under SUq(n) and SUq-1(n). By the isomorphism, the defining relations of a SUq-1(n) covariant q-oscillator system are transmuted into those of SUq(n). It is also shown that a similar isomorphism exists for the system of q-oscillators covariant under the quantum supergroup SUq(n/m). Furthermore, the cases of q-deformed Lie (super)algebras constructed from covariant q-oscillator systems are considered. The isomorphisms between q-deformed Lie (super)algebras cannot be obtained by the direct generalization of the isomorphism for covariant q-oscillator systems.
引用
收藏
页码:4553 / 4564
页数:12
相关论文
共 30 条
[1]   A CLASSICALLY SINGULAR REPRESENTATION OF SU(Q)(N) [J].
AIZAWA, N .
PHYSICS LETTERS A, 1993, 177 (03) :195-198
[2]   Q[--]Q-1 INVARIANCE OF Q-OSCILLATORS AND NEW REALIZATIONS OF QUANTUM ALGEBRAS [J].
AIZAWA, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05) :1115-1122
[3]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[4]   SUPERCOVARIANT SYSTEMS OF Q-OSCILLATORS AND Q-SUPERSYMMETRIC HAMILTONIANS [J].
CHAICHIAN, M ;
KULISH, P ;
LUKIERSKI, J .
PHYSICS LETTERS B, 1991, 262 (01) :43-48
[5]   QUANTUM LIE-SUPERALGEBRAS AND Q-OSCILLATORS [J].
CHAICHIAN, M ;
KULISH, P .
PHYSICS LETTERS B, 1990, 234 (1-2) :72-80
[6]  
CHAICHIAN M, 1993, HUTFT936 U HELS PREP
[7]  
Drinfel'd V. G., 1987, PROC INT CONG MATH, V1, P798
[8]  
FADDEEV LD, 1987, ALGEBRA ANAL, V1, P178
[9]   Q-ANALOGS OF CLIFFORD AND WEYL ALGEBRAS - SPINOR AND OSCILLATOR REPRESENTATIONS OF QUANTUM ENVELOPING-ALGEBRAS [J].
HAYASHI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :129-144
[10]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222