On the structure of skew groupoid rings which are Azurnaya

被引:0
作者
Flores, Daiana [1 ]
Paques, Antonio [2 ]
机构
[1] Univ Fed Santa Maria, Dept Math, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
来源
ALGEBRA & DISCRETE MATHEMATICS | 2013年 / 16卷 / 01期
关键词
groupoid action; skew groupoid ring; Azumaya ring; Galois algebra;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
hi this paper we present an intrinsic description of the structure of an Azumaya skew groupoid ring, having its center contained in the respective ground ring, in terms of suitable central Galois algebras and commutative Galois extensions.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 15 条
[1]   SKEW GROUP-RINGS WHICH ARE AZUMAYA [J].
ALFARO, R ;
SZETO, G .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (06) :2255-2261
[2]   PARTIAL GROUPOID ACTIONS: GLOBALIZATION, MORITA THEORY, AND GALOIS THEORY [J].
Bagio, Dirceu ;
Paques, Antonio .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) :3658-3678
[3]   PARTIAL ACTIONS OF ORDERED GROUPOIDS ON RINGS [J].
Bagio, Dirceu ;
Flores, Daiana ;
Paques, Antonio .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (03) :501-517
[4]  
Caenepeel S, 2007, REV ROUM MATH PURES, V52, P151
[5]  
DeMeyer F., 1971, LNM, V181
[6]   Associativity of crossed products by partial actions, enveloping actions and partial representations [J].
Dokuchaev, M ;
Exel, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) :1931-1952
[7]  
Flores D., 2013, ALGEBRA
[8]   Actions and expansions of ordered groupoids [J].
Gilbert, ND .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 198 (1-3) :175-195
[9]  
Harada M., 1965, OSAKA J MATH, V2, P287
[10]   ON SEMISIMPLE EXTENSIONS AND SEPARABLE EXTENSIONS OVER NON COMMUTATIVE RINGS [J].
HIRATA, K ;
SUGANO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1966, 18 (04) :360-+