REMARKS ON PARTITIONER ALGEBRAS

被引:5
作者
DOW, A [1 ]
FRANKIEWICZ, R [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.2307/2048785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partitioner algebras are defined in [1] and are a natural tool for studying the properties of maximal almost disjoint families of subsets of omega. We answer negatively two questions which were raised in [1]. We prove that there is a model in which the class of partitioner algebras is not closed under quotients and that it is consistent that there is a Boolean algebra of cardinality N1 which is not a partitioner algebra.
引用
收藏
页码:1067 / 1070
页数:4
相关论文
共 4 条
[1]   PARTITION ALGEBRAS FOR ALMOST-DISJOINT FAMILIES [J].
BAUMGARTNER, JE ;
WEESE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :619-630
[2]  
DOW A, UNPUB COMPACT HAUSDO
[3]   ON PARTITIONER-REPRESENTABILITY OF BOOLEAN-ALGEBRAS [J].
FRANKIEWICZ, R ;
ZBIERSKI, P .
FUNDAMENTA MATHEMATICAE, 1990, 135 (01) :25-35
[4]  
Shelah S., 1984, AXIOMATIC SET THEORY, V31, P183