A CRITERION FOR PRIMENESS OF ENVELOPING-ALGEBRAS OF LIE-SUPERALGEBRAS

被引:20
作者
BELL, AD
机构
[1] Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee
关键词
D O I
10.1016/0022-4049(90)90036-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if the determinant of a certain matrix obtained from the Lie product on the odd part of a Lie superalgebra is nonzero, then the enveloping algebra of the Lie superalgebra is a prime ring. We then apply this criterion to show that the enveloping algebra of a classical simple Lie superalgebra not of type b(n) is a prime ring.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 7 条
[1]   ZERO DIVISORS IN ENVELOPING-ALGEBRAS OF GRADED LIE-ALGEBRAS [J].
AUBRY, M ;
LEMAIRE, JM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1985, 38 (2-3) :159-166
[2]   ENVELOPING-ALGEBRAS OF LIE-SUPERALGEBRAS [J].
BEHR, EJ .
PACIFIC JOURNAL OF MATHEMATICS, 1987, 130 (01) :9-25
[3]   RADICALS OF CROSSED-PRODUCTS OF ENVELOPING-ALGEBRAS [J].
BERGEN, J ;
MONTGOMERY, S ;
PASSMAN, DS .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (02) :167-184
[4]   LIE SUPER-ALGEBRAS [J].
KAC, VG .
ADVANCES IN MATHEMATICS, 1977, 26 (01) :8-96
[5]  
Lam T.Y, 1973, ALGEBRAIC THEORY QUA
[6]  
LETZTER ES, IN PRESS PRIME PRIMI
[7]  
SCHEUNERT M, 1979, LECTURE NOTES MATH, V716