A Note on the Diophantine Equation x! plus A = y(2), II

被引:0
作者
Togbe, Alain [1 ]
机构
[1] Purdue Univ North Cent, Dept Math, 1401 S,US 421, Westville, IN 46391 USA
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2006年 / 6卷 / D06期
关键词
Brocard-Ramanujan; Diophantine equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we study the variant of the Brocard-Ramanujan Diophantine equation x! + A = y(2). In a previous note, we studied a system of three equations of the type Brocard-Ramanujan. Here, first we consider another pattern, precisely the cases A = 4k + 3, A = 4(k + 1)+ 3, A = 4(k + 2), where k epsilon N. We use an elementary approach to prove that these simultaneous equations have only two integral solutions. Then we show that the set of vertical bar A vertical bar is of asymptotic density zero.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 16 条
[1]   On the Brocard-Ramanujan diophantine equation n!+1=m2 [J].
Berndt, BC ;
Galway, WF .
RAMANUJAN JOURNAL, 2000, 4 (01) :41-42
[2]  
BROCARD H, 1876, NOUV CORRES MATH, V2, P287
[3]  
Brocard H., 1885, NOUV ANN MATH, V4, P291
[4]  
DABROWSKI A, 1996, NIEUW ARCH WISK, V14, P321
[5]  
Dufour B., 2004, INT MATH J, V5, P577
[6]  
ERDOS P, 1937, ACTA LITT SCI SZEGED, V8, P241
[7]  
Gerardin A., 1906, NOUV ANN MATH, V6, P222
[8]  
Gupta H., 1935, MATH STUDENT, V3, P71
[9]  
Guy R. K., 1994, UNSOLVED PROBLEMS NU, V1
[10]  
Kihel O., 2004, INT J PURE APPL MATH, V6, P477