ALGORITHMIC FAULT TOLERANCE USING THE LANCZOS METHOD

被引:18
作者
BOLEY, DL
BRENT, RP
GOLUB, GH
LUK, FT
机构
[1] AUSTRALIAN NATL UNIV,COMP SCI LAB,CANBERRA,ACT 2601,AUSTRALIA
[2] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[3] CORNELL UNIV,SCH ELECT ENGN,ITHACA,NY 14853
关键词
ALGORITHMIC FAULT TOLERANCE; ERROR CORRECTION; CHECKSUMS; LANCZOS METHOD;
D O I
10.1137/0613023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of algorithm-based fault tolerance, and makes two major contributions. First, it shows how very general sequences of polynomials can be used to generate the checksums, so as to reduce the chance of numerical overflows. Second, it shows how the Lanczos process can be applied in the error location and correction steps, so as to save on the amount of work and to facilitate actual hardware implementation.
引用
收藏
页码:312 / 332
页数:21
相关论文
共 17 条
[1]   A LINEAR ALGEBRAIC MODEL OF ALGORITHM-BASED FAULT TOLERANCE [J].
ANFINSON, CJ ;
LUK, FT .
IEEE TRANSACTIONS ON COMPUTERS, 1988, 37 (12) :1599-1604
[2]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[3]  
Boley D. L., 1991, Numerical Algorithms, V1, P21, DOI 10.1007/BF02145581
[4]   THE LANCZOS - ARNOLDI ALGORITHM AND CONTROLLABILITY [J].
BOLEY, DL ;
GOLUB, GH .
SYSTEMS & CONTROL LETTERS, 1984, 4 (06) :317-324
[5]  
BOLEY DL, 1989, NA8912 STANF U COMP
[6]  
Brent R. P., 1989, Proceedings of the SPIE - The International Society for Optical Engineering, V1058, P130, DOI 10.1117/12.951675
[7]  
BRENT RP, 1990, MATH SIGNAL PROCESSI, V2, P791
[8]  
GOLUB GH, 1989, MATRIX COMPUTATIONS
[9]   ALGORITHM-BASED FAULT TOLERANCE FOR MATRIX OPERATIONS [J].
HUANG, KH ;
ABRAHAM, JA .
IEEE TRANSACTIONS ON COMPUTERS, 1984, 33 (06) :518-528
[10]  
JOU JY, 1986, P IEEE, V74, P732, DOI 10.1109/PROC.1986.13535