CHAOS IN TERMS OF THE MAP CHI-]OMEGA(CHI, F)

被引:34
作者
BRUCKNER, AM
CEDER, J
机构
[1] University of California, Santa Barbara, CA
关键词
D O I
10.2140/pjm.1992.156.63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the class of compact subsets of I = [0, 1] , furnished with the Hausdorf metric. Let f is-an-element-of C(I, I) . We study the map omega(f) : I --> K defined as omega(f)(x) = omega(x ,f), the omega-limit set of x under f . This map is rarely continuous, and is always in the second Baire class. Those f for which omega(f) is in the first Baire class exhibit a form of nonchaos that allows scrambled sets but not positive entropy. This class of functions can be characterized as those which have no infinite omega-limit sets with isolated points. We also discuss methods of constructing functions with zero topological entropy exhibiting infinite omega-limit sets with various properties. 4
引用
收藏
页码:63 / 96
页数:34
相关论文
共 15 条
[1]  
AGRONSKY SJ, 1990, REAL ANAL EXCHANGE, V15, P483
[2]   STRATIFICATION OF CONTINUOUS-MAPS OF AN INTERVAL [J].
BLOCK, LS ;
COPPEL, WA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (02) :587-604
[3]  
Bruckner A.M., 1990, TAMKANG J MATH, V21, P287
[4]  
BRUCKNER AM, 1975, B I MATH ACAD SINICA, V3, P333
[5]  
DEVANEY R, 1986, CHAOTIC DYNAMICAL SY
[6]   CHARACTERIZATIONS OF TURBULENT ONE-DIMENSIONAL MAPPINGS VIA OMICRON-LIMIT SETS [J].
EVANS, MJ ;
HUMKE, PD ;
LEE, CM ;
OMALLEY, RJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (01) :261-280
[7]   CHARACTERIZATIONS OF WEAKLY CHAOTIC MAPS OF THE INTERVAL [J].
FEDORENKO, VV ;
SARKOVSKII, AN ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :141-148
[8]  
Kirchheim B., 1990, MATH SLOVACA, V40, P267
[9]  
Kuratowski K., 1966, TOPOLOGY, V1
[10]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992