A NOTE ON ASYMPTOTIC SOLUTIONS OF FLOW BETWEEN 2 OPPOSITELY ROTATING INFINITE PLANE DISKS

被引:18
作者
TAM, KK
机构
关键词
D O I
10.1137/0117122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that in the inviscid limit, the governing equations admit eigensolutions. By combining the Stewartson-type solution with an eigen-solution, the Pearson solution is recovered. The two '%'opposite'%' solutions are obtained by using two different eigensolutions with the same eigenvalue. It is apparent that more solutions, corresponding to different eigenvalues, may be constructed.
引用
收藏
页码:1305 / &
相关论文
共 10 条
[2]   The flow due to a rotating disc. [J].
Cochran, WG .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1934, 30 :365-375
[3]   AXIALLY SYMMETRIC FLOW OF A VISCOUS FLUID BETWEEN 2 INFINITE ROTATING DISKS [J].
LANCE, GN ;
ROGERS, MH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 266 (1324) :109-&
[4]   ON FLOW BETWEEN A ROTATING AND A STATIONARY DISK [J].
MELLOR, GL ;
CHAPPLE, PJ ;
STOKES, VK .
JOURNAL OF FLUID MECHANICS, 1968, 31 :95-&
[6]   ON THE FLOW BETWEEN 2 ROTATING COAXIAL DISKS [J].
STEWARTSON, K .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (02) :333-341
[7]  
TAM KK, 1965, THESIS U TORONTO
[8]  
Vasileva A., 1963, RUSS MATH SURV, V18, P13, DOI [10.1070/RM1963v018n03ABEH001137, DOI 10.1070/RM1963V018N03ABEH001137]
[9]  
Von Karman T., 1921, Z ANGEW MATH MECH, V1, P232
[10]  
Wasow W., 1965, ASYMPTOTIC EXPANSION