Mineralization of Drugs in Aqueous Medium by Advanced Oxidation Processes

被引:28
作者
Antonio Garrido, Jose [1 ]
Brillas, Enric [1 ]
Lluis Cabot, Pere [1 ]
Centellas, Francesc [1 ]
Arias, Conchita [1 ]
Maria Rodriguez, Rosa [1 ]
机构
[1] Univ Barcelona, Fac Quim, Dept Quim Fis, Lab Electroquim Mat & Medi Ambient, Marti & Franques 1-11, E-08028 Barcelona, Spain
关键词
drugs; ozonation; catalysis; anodic oxidation; boron-doped diamond electrode; electro-Fenton; photoelectro-Fenton;
D O I
10.4152/pea.200701019
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
At present chemical (AOPs) and electrochemical (EAOPs) advanced oxidation processes with ability to destroy organic pollutants in waters are being developed. These methods are based on the production of hydroxyl radical ((OH)-O-center dot) as oxidant. In AOPs (OH)-O-center dot radical can be obtained from Fenton's reaction between Fe2+ and H2O2 added to the medium, photoreduction of Fe3+ species or reaction between ozone and Fe2+. In EAOPs this radical is formed from water oxidation on the surface of a high O-2-overvoltage anode and/or Fenton's reaction between Fe2+ added to the medium and H2O2 electrogenerated at the cathode by the two-electron reduction of oxygen. The present work reports the mineralization of several aromatic drugs such as paracetamol, ibuprofen, clofibric acid and salicylic acid by AOPs based on ozonation catalyzed by Fe2+, Cu2+ and/or UVA light and EAOPs like anodic oxidation, electro-Fenton and photoelectro-Fenton, which are environmentally friendly electrochemical methods. For the latter processes, the drug decay with time and the evolution of aromatic intermediates and generated carboxylic acids are studied. Anodic oxidation is only effective when a boron-doped diamond (BDD) anode is used, whereas the photoelectro-Fenton process with Fe2+, Cu2+ and UVA light is the most potent method to completely destroy the drugs. The combined use of catalysts Fe2+, Cu2+ and UVA light in catalyzed ozonation also leads to overall decontamination of drug solutions.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 47 条
[1]   The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents [J].
Alverez-Gallegos, A ;
Pletcher, D .
ELECTROCHIMICA ACTA, 1999, 44 (14) :2483-2492
[2]   Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system [J].
Andreozzi, R ;
Caprio, V ;
Marotta, R ;
Vogna, D .
WATER RESEARCH, 2003, 37 (05) :993-1004
[3]   Ozonation of p-chlorophenol in aqueous solution [J].
Andreozzi, R ;
Marotta, R .
JOURNAL OF HAZARDOUS MATERIALS, 1999, 69 (03) :303-317
[4]  
Beltran F.J., 2003, CHEM DEGRADATION MET, V1st, P1
[5]   Electrochemical incineration of glucose as a model organic substrate I. Role of the electrode material [J].
Bonfatti, F ;
Ferro, S ;
Lavezzo, F ;
Malacarne, M ;
Lodi, G ;
De Battisti, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (06) :2175-2179
[6]   Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode [J].
Brillas, E ;
Boye, B ;
Sirés, I ;
Garrido, JA ;
Rodríguez, RM ;
Arias, C ;
Cabot, PL ;
Comninellis, C .
ELECTROCHIMICA ACTA, 2004, 49 (25) :4487-4496
[7]   Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode [J].
Brillas, E ;
Sirés, I ;
Arias, C ;
Cabot, PL ;
Centellas, F ;
Rodríguez, RM ;
Garrido, JA .
CHEMOSPHERE, 2005, 58 (04) :399-406
[8]   Degradation of the herbicide 2,4-DP by catalyzed ozonation using the O3/Fe2+/UVA system [J].
Brillas, E ;
Cabot, PL ;
Rodríguez, RA ;
Arias, C ;
Garrido, JA ;
Oliver, R .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 51 (02) :117-127
[9]   Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode [J].
Brillas, E ;
Baños, MA ;
Camps, S ;
Arias, C ;
Cabot, PL ;
Garrido, JA ;
Rodríguez, RM .
NEW JOURNAL OF CHEMISTRY, 2004, 28 (02) :314-322
[10]   Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method [J].
Brillas, E ;
Boye, B ;
Baños, MA ;
Calpe, JC ;
Garrido, JA .
CHEMOSPHERE, 2003, 51 (04) :227-235